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Basic Situation

I Simple linear model under interval-valued covariates:

yi = β0 + β1xi + εi , i = 1, . . . , n

xi ∈ [x i , x i ] a.s., i = 1, . . . , n.

I (ε1, . . . , εn) assumed i.i.d. with expectation 0 and variance σ2

(but can be relaxed).

I yi precisely observed.

I xi only observed in intervals (epistemic data imprecision).

I Because the xi ’s are not precisely observed, the model is

generally only partially identified.
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Partial Identification

I Set-valued estimator for the best linear predictor:

OLS =
⋃{

argmin
β
{||Xβ − y ||2} | X ∈ [X ,X ]

}
.

I Under certain assumptions, this set-valued estimator

converges to the sharp identification region for the best linear

predictor. However, computing OLS is very difficult. (Already

computing exact bounds for σ̂2 is NP-hard.)

I Here, we are only interested in the slope-parameter β1.
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Approach 1: Interval-arithmetic

β̂1 =

n∑
i=1

(xi −mean(x))(yi −mean(y))

n∑
i=1

(xi −mean(x))2
.

I Then, apply interval-arithmetic (for simplicity separately for

the nominator and the denominator).
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Approach 2: Reverse Regression and Analytical Bounds

I Firstly, regress x on y : βxy =
[
(Y ′Y )−1Y ′x

]
21

.

I Only x is interval-valued and βxy is linear in x .

I OLSxy = {βxy | x ∈ [x , x ]} and especially the minimal slope

parameter for the reverse regression βxy is easy to compute.

I Since |βyx | ≤ 1
|βxy | (Cauchy-Schwarz inequality), we have

βyx ≤ 1
βxy

(for positive slope parameters).

I This gives an upper bound for β̂1.
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Approach 3: Replacing OLS by Another Estimator

I Use another estimator that is linear in y :

I β̂1 =
∑
j>i
αji ·

yj−yi
xj−xi with coefficients αji ≥ 0 and

∑
j>i
αji = 1.

I This is a convex combination of all the simple estimates
yj−yi
xj−xi

for the slope based on pairs of two data points.

I This estimator is unbiased and the variance can be minimized

by optimizing the variance in dependence on the coefficients

αji .

I Theorem 1: For precise x , this estimator is exactly the

OLS-estimator.

I For interval-valued x , simply apply interval-arithmetic to all

the estimates
yj−yi
xj−xi .

I Conservative confidence intervals are also attainable by

estimating an upper bound for σ̂2 and by analyzing the

coefficients αji . 5



Results and Outlook

I Approach 3 usually gives the sharpest bounds.

I Further possible modifications of approach 3:

1. Replace weighted mean by weighted median to obtain more

robust estimates.

2. Also for confidence intervals, more robust estimates for the

scale parameter are thinkable.

3. One can also adjust for possible heteroscedasticity.

4. Does also work for imprecise y .

5. Also applicable for multiple linear regression. Open question: Is

there a generalization of Theorem 1 for the case of multiple

linear regression?
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