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Subgroup Discovery

The basic task of subgroup discovery can be stated as:

“In subgroup discovery, we assume we are given a so-called

population of individuals (objects, customer,...) and a property of

those individuals we are interested in. The task of subgroup

discovery is then to discover the subgroups of the population that

are statistically “most interesting” i.e. are as large as possible and

have the most unusual statistical (distributional) characteristics

with respect to the property of interest.” [Wrobel, 2001]
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Subgroup Discovery

� Piatetsky-Shapiro quality function qPS is a quantity for

measuring the statistical interestingness of a subgroup.

� It can be shown that

qPS = C · D̂S,n.

� Here, C is a fixed constant and D̂S,n is a Kolmogorov-Smirnov

type supremum statistic.

� Therefore, we would like to take a statistical look at Subgroup

Discovery.

� We use insights from Vapnik-Chervonenkis theory (statistical

learning theory).
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Overview i

� Given family S of sets (subgroups) over some ground space

(population) G .

� Given two probability laws P and P ′ over G that represent the

distribution of a binary target attribute of interest within G ,

e.g., gender:

P(A) . . . proportion of male persons in subgroup A ∈ S (in

relation to all male persons),

P ′(A) . . . proportion of female persons in subgroup A ∈ S (in

relation to all female persons).
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Overview ii

� Quantity of interest:

DS := sup
A∈S

|P(A)− P ′(A)| :

Maximal (absolute) difference in proportions of the attribute

of interest in some subgroup A.

� Or the argmax: That subgroup for which the difference in

proportions is maximal.

� Problem: Inference: We have only samples of the entire

population G (of size n, both for P and P ′) and replace the

laws P and P ′ with its empirical analogues ν and ν ′,

respectively.
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Overview iii

� If the family S is too large (or too complex), then the

estimator

D̂S,n := sup
A∈S

|ν(A)− ν ′(A)|

is a very poor estimator of

DS = sup
A∈S

|P(A)− P ′(A)|

(the same holds for the argmax).

� Idea: Regularization: a) Reduce S, i.e., make the (’effective’)

size of S smaller by looking only at a subfamily T ⊆ S.
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Overview iv

� Or (here): b) Restructure S in a way that reduces its

complexity, i.e., replacing S by U which is similar to S w.r.t.

the substance matter problem at hand, but statistically more

tamely than S.

� Tools for guiding this in a statistically sophisticated manner:

Statistical learning theory.

Important quantities:

� Vapnik-Chervonenkis dimension (VC dimension): h

� Growth function: mS .

� Both quantities control both the effective size, as well as the

complexity of S.
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Overview v

� There are interrelations between h and mS , as well as between

the size and the complexity of S.
� But the later are somehow not very clear w.r.t. the statistical

behaviour of the statistic D̂S,n.

� In the sequel, we would like to regularize D̂S,n

a) by making S smaller, i.e., working with a subset T ⊆ S or

b) by making S less complex in terms of the VC dimension by

’restructuring’ S to U with h(U) ≤ h(S) (note that generally

U ⊈ S).

� Then we use the regularized statistic

D̂T ,n = sup
A∈T

|ν(A)− ν ′(A)| or D̂U ,n = sup
A∈U

|ν(A)− ν ′(A)|,

respectively, e.g. for a statistical test of equality of P and P ′.
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Relation to Formal Concept Analysis

Starting point: Formal context K = (G ,M, I ) (’crosstable’) with

� G ⊆ G . . . set of objects (here: surveyed statistical units, e.g.,

respondents in a social survey).

� M . . . set of (binary) attributes (here, covariates).

� I ⊆ G ×M . . . binary relation with (g ,m) ∈ I if person g has

attribute m.

x y

income ≤ 1000 occupied · · · sex=male

person 1 × × 0

person 2 × 1

person 3 0
... 1

person m × 0
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� Subgroups in Subgroup Discovery are usually described by attribute

descriptions, i.e. by attribute sets: For B ∈ M define

B ′ := {g ∈ G | ∀m ∈ B : gIm}.
� In Formal Concept Analysis (FCA): Family of all subgroups can be

also seen as all subgroups generated by arbitrary sets of objects: For

arbitrary A ⊆ G : A 7→ A′ := {m ∈ M | ∀g ∈ A : gIm}
A′ 7→ A′′ := {g ∈ G | ∀m ∈ A′ : gIm}.

� The map A 7→ A′ 7→ A′′ is a closure operator which is studied in

FCA. All images of the operator ′′ are called closed sets, hulls or

extents and are exactly the subgroups in Subgroup Discovery.

� The images of the operator ′ are called closed item sets or intents.
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Important here: FCA allows for looking at subgroups as generated by

object sets, not only as generated by attribute sets.
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Vapnik-Chervonenkis theory in Formal Concept Analysis

In FCA, the VC dimension of the space S = {B ′ | B ⊆ M} is given

by the largest size of a contranominal scale:
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Regularization: A): Reducing S to a subfamily T ⊆ S:
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Regularization: A): Reducing S to a subfamily T ⊆ S:
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Regularization: B): Restructuring S to U with h(U) ≤ h(S):
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Regularization: B): Restructuring S to U with h(U) ≤ h(S):
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Theorem (Restructuring S)

i) If a domain A ⊆ G does not suffer from a high VC dimension

in the sense that no g ∈ A ⊆ G belongs to a large

contranominal scale, then

SA = UA, i.e.:

{B ∩ A | B ∈ S} = {B ∩ A | B ∈ U}.

ii) In general, it does not hold that U ⊆ S.
iv) The VC dimension of U is at most K . (where K is the VC

dimension of the subcontext).

iii) Therefore we have the generalization inequality (under

H0 : P = P ′):

P⊗n
(
D̂U ,n ≥ ε

)
≤ 6 ·

[
(2n)K + 1

]
e−

nε2

4 .
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Application i

� German General Social Survey (GGSS): ISSP 2017 module on

social networks and social resources.

� Covariates: 10 questions asking if the respondents know

several people who have an occupation from a list of 10

occupational groups (e.g., bus/lorry driver). (4 answer

categories)

� Target variable: Answer to the question ’At these occasions

[going out to eat or drink with three or more friends or

acquaintances who are not family members], how often do

you make new friends or acquaintances?’ (dichotomized here

as 1 if ’often’ or ’very often’ and 0 otherwise)
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Application ii

� Test:

H0 : P = P ′: Making new friends is not related to the people

one knows vs

H1 : P ̸= P ′: There is a subgroup (described by which people

one knows) for which making new friends is different

compared to the whole population (or compared to persons

who know/do not know certain other people).
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Figure 1: Simulation-based estimate of the growth function (left) and the

distribution of the statistic D under H0 based on a permutation scheme (right).

The vertical lines represent the value of the statistic for the actually observed

data.
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