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This (concerning §12(1) Nr.2) is joint work with ... (in alpha-

betical order) ...

Thomas Augustin (TA), Jean Baccelli (JB), Hannah
Blocher (HB), Christoph Jansen (CJ) and Malte
Nalenz (MN)

Three parts:

A: Relational data analysis for non-standard data;

B: Decision making under weakly structured information;

C: Analysis of deficient data
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The additional 3 papers concerning §12(1) Nr.1 are joint work

with ... (in alphabetical order) ...

Thomas Augustin (TA), Hannah Blocher (HB), Scott
Ferson (SF), Christoph Jansen (CJ), Malte Nalenz (MN),
Julian Rodemann (JR) and Krasymyr Tretiak (KT)
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1 Statistical models for partial orders based on data depth and formal concept analysis

(HB, GS, CJ) (2022, COMM COM INF SC)

2 Data depth functions for non-standard data by use of formal concept analysis (HB,

GS) (2023, under review)

3 Depth functions for partial orders with a descriptive analysis of machine learning

algorithms (HB, GS, CJ, MN) (2023, Proc. of ISIPTA)

4 Concepts for decision making under severe uncertainty with partial ordinal and partial

cardinal preferences (CJ, GS, TA) (2018, IJAR)

5 Information efficient learning of complexly structured preferences: Elicitation proce-

dures and their application to decision making under uncertainty (CJ, HB, TA, GS)

(2022, IJAR)

6 Risk aversion over finite domains (JB, GS, CJ) (2022, Theory Decis.)

7 Computing simple bounds for regression estimates for linear regression with interval-

valued covariates (GS) (2021, Proc. of ISIPTA)

8 A short note on the equivalence of the ontic and the epistemic view on data impre-

cision for the case of stochastic dominance for interval-valued data GS (2019) (Proc.

of ISPTA)



9 Statistical comparisons of classifiers by generalized stochastic dominance (CJ, MN,

GS, TA) (2023, JMLR)

10 Robust statistical comparison of random variables with locally varying scale of mea-

surement. (CJ, GS, HB, JR, TA) (2023, PMLR)

11 Neural network model for imprecise regression with interval dependent variables

(KT, GS, SF) (2023, Neural Netw.)
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Relational data analysis

Numerical data analysis

A given set O = {o1, . . . , om} of objects (data points, statistical units)

is analyzed by analyzing numerical assignments u(o1), . . . , u(om).

E.g., person oi has an income of 1200 Euro.

Relational data analysis

A given set O = {o1, . . . , om} of objects (data points, statistical units)

is analyzed by either

▶ analyzing empirical relations R between the objects (e.g., person oi has a

higher income than person oj , ⇝ order theory) or here:

▶ analyzing empirical relations I between the objects and certain

attributes A = {a1, . . . , am}.

E.g., person oi is male, ⇝ Formal concept analysis (FCA).
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The right math for relational data analysis:

Formal concept analysis (FCA, Ganter and Wille [2012])

Given: formal context (crosstable) K :=

(G ,M, I ) where

▶ G is a set of objects,

▶ M is a set of attributes,

▶ I ⊆ G ×M is a binary relation with

the interpretation (g ,m) ∈ I iff object

g has attribute m.

▶ Aim: Describe K with the help of

so-called formal concepts.

m1 m2 m3 m4 m5 m6

g1 x

g2 x

g3 x

g4 x

g5 x

g6 x

g7 x x x

g8 x x x

g9 x x x
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Formal concept analysis (FCA)

Formal concept

Let K := (G ,M, I ) be a formal context. A pair (A,B) where A ⊆ G is

a set of objects and B ⊆ M is a set of attributes is called a formal

concept if

1. All objects in A have all attributes in B.

2. The set A is maximal w.r.t. the property 1.

3. The set B is maximal w.r.t. the property 1.

In such a case, we call A the extent and B the intent of the formal

concept (A,B).

▶ Here, we emphasize the object sets

▶ The family of all concept extents, ordered by set inclusion, builds a

complete lattice.
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An illustrative example: Geometry

Numerical data analysis

(analytic geometry)

® -r r -:: (1. 7 / 2 . S- J

)(1 � ( 1 ;1.5) 

1 2 

@ >< I :- ( 2. {j 2 ) 

Relational data analysis

(synthetic geometry)
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Synthetic Geometry

Hn Hz H}

Xs X X X

H ✗ × ×

×
} X × X

✗ 4 ✗ ×

✗5 ✗ ✗ ✗
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Description languages in FCA

The structure given by a crosstable/formal context can be characterized

with different tools:

1. The complete lattice of all formal concepts i.e. of all appropriate

pairs of object sets and attribute sets. In pour example the object

sets are the (closed) convex sets.

2. Formal object implications: A formal implication A −→ B is valid in

a context if the common attributes of all objects in A are also

shared by the objects in B. In our example e.g., the implication

{x1, x2, x3} −→ {x5} is valid because x5 lies in the convex set

generated by x1, x2 and x3.

11



’Reminder’: Data depth for Rd

A data depth function D(·,P) : Rd −→ R measures how deep or

outlying a given data point z ∈ Rd is located with respect to an observed

data cloud or an assumed underlying distribution in Rd .

It provides a center-outward ordering of points in Rd .

[1]

It can be used for:

▶ description of multivariate distributions

▶ outlier detection

▶ depth based classification and clustering

▶ rank and sign tests

▶ multivariate density estimation

▶ robust linear regression

▶ . . .
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’Reminder’: Data depth for Rd

▶ Started with Tukey’s halfspace depth (Tukey [1975])

▶ After a bunch of further ad hoc depth proposals:

▶ Axiomatic characterization to clean up the landscape (cf., Serfling

and Zuo [2000]):

▶ Specifying certain properties a depth function should obey, e.g.,

affine equivariance, monotonicity relative to deepest point,

(strict) unimodality / quasiconcavity (used synonymously int the

sequel)

DA

gäbe

✗
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Fact:

Many data depth functions known from Rd can be generalized to data

structures given by a formal context!
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Tukey’s halfspace depth

③ ( x) :-. inf P (✗ c- H ) = ...
Hhalfspace
containiug

PCXEC)
• • •

= 1 - Sap
( convexset
not contaüigx
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Convex hull peeling depth
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Convex hull peeling depth
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Convex hull peeling depth
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Convex hull peeling depth
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Convex hull peeling depth

D=%

D=)

Dito

D=} ,
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But note:

All the constructions within Rd become more difficult in general spaces!

(no obvious notion of a ray, (point-)symmetry, distance, infinity, etc.)

However, mathematically, things become more interesting!
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One (of many) intriguing aspects: Unimodality/Quasiconcavity

▶ One (possibly) desirable property of a depth function: Unimodality

▶ One center/mode with highest depth ...

▶ ... and the depth strictly decreases if one moves away from the

center

▶ Two aspects:

1. How to formalize this in higher dimensions and in more abstract

spaces like in the FCA setting?

2. How to guarantee unimodality?
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Unimodality: R1

Maybe also
tun ?

^
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Unimodality: R2

This:

Mound grave, Cuween hill, [2]

Maybe also this:

Dike, [3]

But Not this:

Round dike, Mittelweserverband, [4]

What about this?

Star dune, [5] 24



Contribution 2

2 Data depth functions for non-standard data by use of formal

concept analysis HB, GS (2023, under review)
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Unimodality in FCA i

▶ We introduced a general FCA definition of

unimodality/quasiconcavity in Contribution 2.

▶ This definition does already play an important role in

Contribution 1.

▶ Contribution 2 started a systematic study in an axiomatic

style inspired by the axiomatic study of data depth in Rd :

All-together 14 properties (of representation invariance,

order-preservingness, sequence behaviour and

universality) were analyzed, along with a concrete analysis of

Tukey’s depth w.r.t. these properties.
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Unimodality in FCA ii

▶ There are certain interesting special features that only appear

through the lens of FCA: One can compare data depth

proposals across very different data types!

▶ The approach to data depth through FCA is very general.

Nearly every data type can be handled (Examples: posets,

mixed data structures (e.g., spatial plus ordinal plus

categorical), hierarchical nominal data, etc.)
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Contribution 2: Example: Unimodality in FCA:

No local minima!

▶ Remember: We have no linear

structure

▶ There is generally no notion of a ray

▶ But we can use formal object

implications:

▶ Call D unimodal if

{x1, x2, . . . , xk} −→ {y} implies

D(y) ≥ min{D(x1),D(x2), . . . ,D(xk)}

▶ Call D strictly unimodal if

{x1, x2, . . . , xk} −→ {y} implies

D(y) > min{D(x1),D(x2), . . . ,D(xk)}

✗ ×

✗

✗
,

✗

✗
✗

✗
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Problems with specifying a unimodal depth function

F-ormatmpiati.it " "
"

II "

Outwards Juwauds
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General case: This may happen

t-mpiatis.it " "
"

y, ym
" "

Outwards 71 ✗n
✓ Jnwauds

Hi , _ ,
×:} →fys} ⇒ Dlyn

) >mir{DAD . . . .DK)

=D (K )

{gr . . _ ym} →Fs} ⇒ DAS) >min ( y) , .ph)}
=D ( Gr )
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Facts:

▶ There are formal contexts for which there does not exist any strictly

quasiconcave depth function.

▶ There always exist quasiconcave depth functions:

▶ The function D ≡ 0 is quasiconcave, but useless.

▶ Usually there are non-trivial quasiconcave depth functions.

▶ But they may have many ties.
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’Solutions’

▶ Abstract solution: Rigorously define a notion of a depth function as

being as strictly quasiconcave as possible. This is done in

Contribution 2 (Universality properties, use of ideas from category

theory)

▶ Concrete solution: Make a concrete non-trivial proposal (for a

concrete data type) with presumably few ties. This is done in

Contribution 1.
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Contribution 1:

1 Statistical models for partial orders based on data depth and

formal concept analysis (HB, GS, CJ) (2022, COMM COM INF SC)
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Motivating example

▶ In Dittrich et al. [1998], 303 students where asked for their choices

between 6 foreign universities for their semester abroad.

▶ Within pair comparisons, they could prefer one university over

another or vice versa.

▶ They could also explicitly state that they have no preference

between universities at all (incomparability).

▶ Therefore we have 303 partial orders (posets) as non-standard

data points.
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How to model poset data: The epistemic approach

▶ Most approaches (e.g., Nakamura et al. [2019], Lebanon and Mao

[2007]) model this by latent total orders, together with a

coarsening process that generates the observed partial orders.

▶ This approach is sometimes called the epistemic view on data

imprecision (e.g., Couso and Dubois [2014]).
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How to model poset data: The ontic approach

▶ Here, we hold the view that a response incomparable is not a

non-observation of a hidden comparability, but instead a factual

incomparability.

▶ We look at the data as without any coarsening process.

▶ This approach is sometimes called the ontic view on data

imprecision/non-standard data.
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Relational approach

1 ≤ 2 2 ≤ 1 1 ≤ 3 3 ≤ 1 2 ≤ 1 . . .

p1

p2 x

p3 x

p4 x

p5

p6 x

p7 x x

p8 x x x
...
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Relational approach: With adequate conceptual scaling∗ (for

our purposes)

1 ≤ 2 2 ≤ 1 . . . 1 ≰ 2 2 ≰ 1 . . .

p1 x x

p2 x x

p3 x x

p4 x x

p5 x x

p6 x x

p7 x x

p8 x x
...

∗:Conceptual scaling = Dummy Coding of lattice theory
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Our modeling approach

P(X = x) = Cλ · Γ(λ · (1− Dµ(x))

2 parameters:

µ . . . modal poset (location parameter)

λ . . . scale parameter

and::

Γ . . . decay function (e.g., exp(-x))

Dµ . . . Data depth function with center µ

cλ . . . normalizing constant
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How to define the generic depth function Dµ for our model?

▶ Idea: start with the uniform distribution on the discrete space of all

posets.

▶ Then, for a center/mode µ redistribute a certain amount of

probability mass to µ.

▶ Then, apply a generic generalized depth function like Tukey’s depth

to get a depth function with mode µ.
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Problems with quasiconcavity

▶ Tukey’s depth is quasiconcave.

▶ But: Analysis shows that because of symmetry, one obtains only two

different depth values, i.e., there are many ties ⇝ useless.

▶ Peeling depth is (strictly) quasiconcave, but only in the so-called

meet-distributive case (e.g., the Rd) and here we are far away from

meet-distributivity.

▶ In particular, here the peeling procedure is not well-defined, there

are many ways of peeling at every peeling step.

▶ A random peeling approach (with a subsequent integration over all

peeling paths) would solve this non-uniqueness issue, but the result

is not quasiconcave anymore.
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Our solution

▶ We take inspiration by the analysis of the enclosing depth (a newly

introduced depth that is based on reversing the peeling process, but

that unfortunately also suffers from non-uniqueness issues)

▶ Given a specified center µ one can say something about how deep

certain other posets are to µ in relation to each other.

▶ This structural insight can be used to weight the Tukey’s depth to

get a quasiconcave depth function without many ties.

▶ One difficult obstacle there was: How to concretely deal with the

non-edges of µ.
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Summary part A

▶ We combined data depth and FCA to establish a new

relational methodology for the analysis and the modeling of

non-standard data.

▶ We introduced concrete statistical location scale models for

data that are posets based on FCA and data depth (including

an algorithm for sampling from such models).

▶ In Contribution 3 we applied another FCA-based data depth

(a generalization of the simplicial depth) to machine learning:

We descriptively analyzed (random) multivariate performance

relations between certain classifiers.
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Further research that is on its way (only part A)

▶ Statistical inference (e.g., permutation based tests using

depth-depth plots)

▶ Develop concepts of robustness for FCA-based depth functions

(VC dimension seems to be a key characteristic, here)

▶ Statistical regularization in the context of FCA-data depth.

(Already first results for the newly developed double peeling depth

that regularizes both w.r.t. statistical, as well as robustness aspects.)

▶ Relations to metric approaches: There is an abstract notion of

(Tukey’s) depth in metric spaces (Dai and Lopez-Pintado [2022])

that can be extended to the general theory of FCA. (Possible

application I have in mind: Subgroup discovery for phylogenetic

data)
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Further research related to the other parts

▶ Part B: Data depth for the special case of data points that are itself

preference systems.

▶ Part B: Study notions of dispersion with the help of data depth

(e.g., applied to the notion of polarization in social choice theory)

▶ Part C: Study the case of non-standard data with a partial

epistemic and a partial ontic character (e.g., in the context of

elicitation of preference systems)
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