Computing Simple Bounds for Regression Estimates for Linear Regression with Interval-valued Covariates

Basic Situation

- Simple linear model under interval-valued covariates:

$$
\begin{array}{ll}
y_{i}=\beta_{0}+\beta_{1} x_{i}+\varepsilon_{i}, & i=1, \ldots, n \\
x_{i} \in\left[\underline{x}_{i}, \bar{x}_{i}\right] \quad \text { a.s., } & i=1, \ldots, n \tag{2}
\end{array}
$$

$\Rightarrow\left(\varepsilon_{1}, \ldots, \varepsilon_{n}\right)$ assumed i.i.d. with expectation 0 and variance σ^{2} (but can be relaxed).

- y_{i} precisely observed
x_{i} only observed in intervals (epistemic data imprecision)
\Rightarrow Because the x_{i}^{\prime} s are not precisely observed, the model is generally only partially identified.

Approach 1: Interval-arithmetic

 -$$
\begin{equation*}
\hat{\beta}_{1}=\frac{\sum_{i=1}^{n}\left(x_{i}-\operatorname{mean}(x)\right)\left(y_{i}-\operatorname{mean}(y)\right)}{\sum_{i=1}^{n}\left(x_{i}-\operatorname{mean}(x)\right)^{2}} \tag{4}
\end{equation*}
$$

- Then, apply interval-arithmetic (for simplicity separately for the nominator and the denominator).

Approach 2: Reverse Regression and Analytical Bounds

- Firstly, regress x on $y: \beta_{x y}=\left[\left(Y^{\prime} Y\right)^{-1} Y^{\prime} x\right]_{21}$.
- Only x is interval-valued and $\beta_{x y}$ is linear in x.
$\Rightarrow O L S_{x y}=\left\{\beta_{x y} \mid x \in[\underline{x}, \bar{x}]\right\}$ and especially the minimal slope parameter for the reverse regression $\beta_{x y}$ is easy to compute.
\Rightarrow Since $\left|\beta_{y x}\right| \leq \frac{1}{\left|\beta_{x y}\right|}$ (Cauchy-Schwarz inequality), we have $\overline{\beta_{y x}} \leq \frac{1}{\beta_{x y}}$ (for positive slope parameters).
- This gives an upper bound for $\hat{\beta}_{1}$.

Partial Identification

- Set-valued estimator for the best linear predictor:

$$
\begin{equation*}
O L S=\bigcup\left\{\underset{\beta}{\operatorname{argmin}}\left\{\|X \beta-y\|_{2}\right\} \mid X \in[\underline{X}, \bar{X}]\right\} . \tag{3}
\end{equation*}
$$

- Under certain assumptions, this set-valued estimator converges to the sharp identification region for the best linear predictor. However, computing OLS is very difficult. (Already computing exact bounds for $\hat{\sigma}^{2}$ is NP-hard.)
Here, we are only interested in the slope-parameter β_{1}.

Approach 3: Replacing OLS by Another Estimator

\Rightarrow Use another estimator that is linear in y :
$>\hat{\beta}_{1}=\sum_{j>i} \alpha_{j i} \cdot \frac{y_{j}-y_{i}}{x_{j}-x_{i}}$ with coefficients $\alpha_{j i} \geq 0$ and $\sum_{j>i} \alpha_{j i}=1$.

- This is a convex combination of all the simple estimates $\frac{y_{j}-y_{i}}{x_{j}-x_{i}}$ for the slope based on pairs of two data points.
- This estimator is unbiased and the variance can be minimized by optimizing the variance in dependence on the coefficients $\alpha_{j i}$.
- Theorem 1: For precise x, this estimator is exactly the OLS-estimator.
\Rightarrow For interval-valued x, simply apply interval-arithmetic to all the estimates $\frac{y_{j}-y_{i}}{x_{i}-x_{i}}$.
- Conservative confidence intervals are also attainable by estimating an upper bound for $\hat{\sigma}^{2}$ and by analyzing the coefficients $\alpha_{j i}$.

Results and Outlook

- Approach 3 usually gives the sharpest bounds.
- Further possible modifications of approach 3:
- Replace weighted mean by weighted median to obtain more robust estimates.
- Also for confidence intervals, more robust estimates for the scale parameter are thinkable.
- One can also adjust for possible heteroscedasticity.
- Does also work for imprecise y.
\triangleright Also applicable for multiple linear regression. Open question: Is there a generalization of Theorem 1 for the case of multiple linear regression?

