
Computing Simple Bounds for Regression Estimates
for Linear Regression with Interval-valued Covariates

Basic Situation
I Simple linear model under interval-valued covariates:

yi = V0 + V1xi + Yi, i = 1, . . . , n (1)
xi ∈ [x i, x i] a.s., i = 1, . . . , n. (2)

I (Y1, . . . , Yn) assumed i.i.d. with expectation 0 and variance f2 (but can be relaxed).
I yi precisely observed.
I xi only observed in intervals (epistemic data imprecision).
I Because the xi’s are not precisely observed, the model is generally only partially

identified.

Partial Identification
I Set-valued estimator for the best linear predictor:

OLS =
⋃ {

argmin
V

{| |XV − y | |2} | X ∈ [X ,X ]
}
. (3)

I Under certain assumptions, this set-valued estimator converges to the sharp
identification region for the best linear predictor. However, computing OLS is very
di�icult. (Already computing exact bounds for f̂2 is NP-hard.)

I Here, we are only interested in the slope-parameter V1.

Approach 1: Interval-arithmetic
I

V̂1 =

n∑
i=1
(xi −mean(x)) (yi −mean(y))

n∑
i=1
(xi −mean(x))2

.

(4)
I Then, apply interval-arithmetic (for

simplicity separately for the nominator
and the denominator).

Approach 2: Reverse Regression
and Analytical Bounds

I Firstly, regress x on y: Vxy =
[
(Y ′Y )−1Y ′x

]
21.

I Only x is interval-valued and Vxy is linear in x.
I OLSxy = {Vxy | x ∈ [x, x]} and especially the

minimal slope parameter for the reverse
regression Vxy is easy to compute.

I Since |Vyx | ≤ 1
|Vxy | (Cauchy-Schwarz inequality),

we have Vyx ≤ 1
Vxy

(for positive slope

parameters).
I This gives an upper bound for V̂1.

Approach 3: Replacing OLS by Another Estimator
I Use another estimator that is linear in y:
I V̂1 =

∑
j>i

Uji ·
yj−yi
xj−xi with coe�icients Uji ≥ 0 and

∑
j>i

Uji = 1.

I This is a convex combination of all the simple estimates yj−yi
xj−xi for the slope

based on pairs of two data points.
I This estimator is unbiased and the variance can be minimized by optimizing

the variance in dependence on the coe�icients Uji.
I Theorem 1: For precise x, this estimator is exactly the OLS-estimator.
I For interval-valued x, simply apply interval-arithmetic to all the estimates

yj−yi
xj−xi .

I Conservative confidence intervals are also a�ainable by estimating an upper
bound for f̂2 and by analyzing the coe�icients Uji.

Results and Outlook
I Approach 3 usually gives the sharpest bounds.
I Further possible modifications of approach 3:
I Replace weighted mean by weighted median to obtain more robust estimates.
I Also for confidence intervals, more robust estimates for the scale parameter are

thinkable.

I One can also adjust for possible heteroscedasticity.
I Does also work for imprecise y.
I Also applicable for multiple linear regression. Open question: Is there a generalization

of Theorem 1 for the case of multiple linear regression?
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