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3 Declaration of the contributions of the author
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to the list above) that contributes to the habilitation in the sense of §12(1), Nr. 1 and Nr. 2,
I briefly indicate my own contribution to the respective publication1 All contributions except
contribution 2 are peer-reviewed papers. Contribution 2 is currently under review (and ac-
cessible under https://www.foundstat.statistik.uni-muenchen.de/personen/mitglieder/
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Contribution 1 Sections 1,2 and 7 were written jointly by all three authors. Georg Schollmeyer
wrote most parts of Section 5. He developed the generalizations of the Tukeys depth, the peel-
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Tukeys depth. The properties from Definiton 1 were developed and discussed by all authors. The
problems of classical methods described in Section 2 were extensively discussed by all authors (and
the solution via the concrete scaling method from Section 4 was developed by Hannah Blocher).
All authors contributed to the revision of the paper.

Contribution 2Hannah Blocher had the management and coordination responsibility and drafted
most of the paper. Georg Schollmeyer wrote Section 4.4 and 5.4, Example 3 of Section 2 and the
explanation to the generalized Tukeys depth in Section 3. Hannah Blocher wrote the other parts.
Both authors contributed to the development of the properties (P1) - (P13) and the corresponding
theorems and proofs. (Properties (P6), (P7), (P8), (P9), (P13) and (P14) and the idea of proof
for Theorems 1, 5, 7, 11 and 12 are mainly due to Georg Schollmeyer. The others are mainly due
to Hannah Blocher.)

Contribution 3 Hannah Blocher developed the idea of ufg depth. She wrote most of the pa-
per. To be more precise: The introduction was written by Christoph Jansen. Hannah Blocher
wrote the preliminaries and defined the (empirical) ufg depth. Furthermore, Hannah Blocher
claimed and proved Lemma 1, Theorem 2, 1st and 2nd part, Corollary 3, Corollary 4, the lower
bound of Theorem 5 and Theorem 6. Georg Schollmeyer made the claim and proofs of Theorem
2, 3rd part and the upper bound of Theorem 5. The claim of Theorem 7 was done by Georg
Schollmeyer and Christoph Jansen. Georg Schollmeyer proved Theorem 7. Chapter 5 was written
by Georg Schollmeyer. Hannah Blocher wrote Chapter 6.1 and implemented the test if a subset
is an element of S. Georg Schollmeyer contributed with the implementation of the connectedness
property. Malte Nalenz provided the data set, performed the data preparation and wrote Chapter
6.2. Hannah Blocher analyzed the data set and wrote Chapter 6.3. Georg Schollmeyer, Christoph
Jansen and Malte Nalenz supported the analysis with intensive discussions. Christoph Jansen
provided the conclusion. Georg Schollmeyer and Christoph Jansen also helped with discussions
about the definition of ufg depth and all properties. Malte Nalenz, Christoph Jansen, and Georg
Schollmeyer also contributed by providing detailed proofreading and help with the general struc-
ture of the paper. All authors contributed to the revision of the paper.

Contribution 4 This contribution is based on a conference paper for the ISIPTA ’17 confer-
ence (see Jansen et al. (2017)), drafted by Christoph Jansen and revised according to remarks
of the other authors as well as review comments of the three anonymous ISIPTA ’17 referees.
Following the invitation to the conference’s special issue in the International Journal of Approx-
imate Reasoning, the conference version was significantly extended to the present version. The
whole extended version was drafted and, in most parts, written by Christoph Jansen. Exceptions
are the paragraph directly following Definition 6, the paragraph directly following the proof of
Proposition 3, the second paragraph following Definition 8, and the first two paragraphs directly
following the proof of Proposition 6. These were drafted by Georg Schollmeyer. The idea of the

1In cases (Contribution 3 and Contribution 4) where the specific contributions of the authors had already been
declared elsewhere, the declaration was taken over mutatis mutandis (up to small additions concerning the revision
of the papers).
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proof of Proposition 3 was jointly developed by Christoph Jansen and Georg Schollmeyer. The
concept of granularity (see Definition 3) was developed in discussions of all three authors. The
name granularity is due to Thomas Augustin, who also contributed to embedding the paper into
the relevant literature. Additionally, several rounds of discussing preliminary versions of the paper
by all authors lead to improvements of the presentation. All authors contributed to revising the
paper according to the reviewers’ comments.

Contribution 5 The paper was mainly drafted by Christoph Jansen. Georg Schollmeyer worked
out most parts of Example 2 (Section 6). In particular, he proposed to use the distance-based
model and proposed and implemented the prediction method based on subgroup discovery to pre-
dict the next pair to elicite. (The simulation part for generating preference systems was done by
Hannah Blocher.) All authors contributed to revising the paper.

Contribution 6 The paper was mainly drafted by Jean Baccelli. All authors contributed to the
main result, Theorem 1. Georg Schollmeyer worked out most parts of the Examples (Example 1
till Example 3), as well as the proofs of the facts to which these examples are related. All authors
contributed to revising the paper.

Contribution 7 & Contribution 8 Because both contributions are single author papers, the
papers were written completely autonomously by Georg Schollmeyer. The revision process was
also done completely autonomously by Georg Schollmeyer.

Contribution 9 The paper was mainly drafted by Christoph Jansen. Georg Schollmeyer sup-
plied Proposition 2 including its proof and its usefulness for the simulation study. He also drafted
parts of Section 3.3 and intensively discussed the aspect of incommensurability as well as the role
of the hypotheses in the statistical test of section 4.2. All authors contributed to revising the paper.

Contribution 10 The paper was mainly drafted by Christoph Jansen. Georg Schollmeyer sup-
plied parts of Proposition 7 and Proposition 8 including parts of the idea for their proof. He also
discussed and drafted parts of the aspects related to regularization. All authors contributed to
revising the paper.

Contribution 11 The paper was mainly drafted by Krasymyr Tretiak. Georg Schollmeyer wrote
parts of Section 3 and supplied R-Code for an implementation of the sharp collection region.
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4 A: Relational data analysis

“It is often said that mathematics is a language. If so, group theory provides the proper vocabulary
for discussing symmetry. In the same way, lattice theory provides the proper vocabulary for dis-
cussing order, and especially systems which are in any sense hierarchies. One might also say that
just as group theory deals with permutations, so lattice theory deals with combinations.” [Birkhoff,
1938, p. 793]

4.1 Introduction

The classical numerical approach to the analysis of data is usually underpinned by relational
measurement theory where one first assumes a certain underlying empirical relative that can be
captured by a measurement mapping that at least respects this relational structure. This map-
ping usually maps into the real numbers and one in a certain way gives only meaning2 to that
structure of the reals that relates to some meaning within the empirical relative. In a second step
one quickly forgets that the obtained numbers appeared indirectly by the measurement mapping
and simply operates in the reals (of course not forgetting which aspects carry meaning). Opposed
to this, within the methodology of relational data analysis one thinks more directly within the
empirical relation between objects or between objects and attributes. For example one would say
that this rod is longer than that rod instead of firstly comparing rods with unit-rods and then
saying for example this rod is 2.5 inches long whereas that rod is only 2.3 inches long. With
this approach to data analysis one in a sense postpones the decision about measurement theoretic
considerations as long as possible and intertwines it more directly with the actual process of data
analysis. One way of concretely doing so is provided by the mathematically rigorously developed
theory of formal concept analysis with its canonical demand for a thorough and substance matter
reflecting conceptual scaling of all involved aspects of a data analysis that should or should not
carry meaning. Our first three contributions combine formal concept analysis with the method-
ology of data depth. Since both theories are not so well known, we would like to start with a very
brief introduction to both topics.

Formal Concept Analysis

Formal concept analysis (FCA) is a mathematical theory developed in the early 1980s by the
Darmstadt research group around Rudolf Wille, Bernhard Ganter and Peter Burmeister. Formal
concept analysis understands itself as an applied theory of order- and lattice theory. The develop-
ment of formal concept analysis was intellectually influenced by the views of Hartmut von Hentig
and his call for a restructuring of the sciences:

“... dann müssen die einzelnen Wissenschaften in erster Linie ihre Disziplinarität überprüfen,
und das heißt, ihre unbewußten Zwecke aufdecken, ihre bewußten Zwecke deklarieren, ihre Mittel
danach auswählen und ausrichten und ihre Berechtigung, ihre Ansprüche, ihre möglichen Folgen
öffentlich und verständlich darlegen und dazu ihren Erkenntnisweg und ihre Ergebnisse über die
Gemeinsprache (und die von mir sogenannte ’Anschauung’) zugänglich machen.”3[von Hentig,
1974, p. 136f]

Rudolf Wille also argued in the sense of this demand in the abstract of his essay Restructuring
Lattice Theory: An Approach Based on Hierarchies of Concepts:

2Compare Suppes [1969].
3English translation by GS: Then every single individual science must first and foremost examine its disci-

plinarity, and that means it must reveal its unconscious ends, declare its conscious ends, and it must select and
align its means accordingly, and publicly and it must comprehensibly explain its justification, its claims, its possible
consequences, and for this purpose it has to make its path of knowledge and its results accessible via the common
language (and what I call ’Anschauung’).
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“Lattice theory today reflects the general status of current mathematics: there is a rich production
of theoretical concepts, results, and developments, many of which are reached by elaborate men-
tal gymnastics; on the other hand, the connections of the theory to its surroundings are getting
weaker and weaker, with the result that the theory and even many of its parts become more isolated.
Restructuring lattice theory is an attempt to reinvigorate connections with our general culture by
interpreting the theory as concretely as possible, and in this way to promote better communication
between lattice theorists and potential users of lattice theory.” [Wille, 1982]

The purely mathematical foundations of formal concept analysis were already laid in the 1930s by
Garrett Birkhoff in the form of general lattice theory. The starting point of formal concept analy-
sis is the mathematical formalization of the concept concept, which is inspired, among others, by
the writings of Charles Sanders Peirce [cf., Peirce [2017]. Nowadays, formal concept analysis finds
practical application for example in data and text mining (e.g., Poelmans et al. [2012]), linguistics
(e.g., Falk and Gardent [2014]), web mining (e.g., Elzinga et al. [2012]), software mining (e.g.,
Wermelinger et al. [2009]), bioinformatics (e.g., Keller et al. [2012], chemistry (e.g., Keller et al.
[2012]), medicine (e.g., Messai et al. [2011]) or ontology engineering (e.g., De Maio et al. [2012]).
For a comprehensive survey on applications of FCA, see Poelmans et al. [2013]

Concretely, in FCA4 one starts with a so-called formal context. A formal context is a triple
K := (G,M, I) with G a set of objects, M a set of attributes and I ⊆ G × M a binary relation
with the interpretation (g,m) ∈ I if object g has attribute m. In the context of statistical data
analysis, the objects are usually the data points, for example the persons that participated in a
social survey. The attributes describe the observed values of the interesting variables, for example
the answer yes or no to the posed questions and then naturally (g,m) ∈ I means that person g
answered the question m with yes. If the answers to the questions in a survey are not binary,
or if one wants to explicitly incorporate the answer no as an attribute, then one can transform
the answers into binary attributes according to some coding scheme. This way to codify non-
binary variables into binary variables is called conceptual scaling in FCA. This flexible way of
incorporating the data into a FCA analysis that at the same time calls the user to very carefully
decide about which measurement theoretic aspects should carry meaning and which not, should be
seen as a main strength of formal concept analysis. Now, given the formal context K = (G,M, I),
the data analysis proceeds by looking at the structure of K in terms of so called formal concepts:
A pair (A,B) with A ⊆ G a set of objects and B ⊆ M a set of attributes is called a formal concept
if

i) ∀g ∈ A∀m ∈ B : (g,m) ∈ I

ii) A is maximal w.r.t. property i), i.e., there exists no further g ∈ G\A with ∀m ∈ M : (g,m) ∈ I

iii) B is maximal w.r.t. property i), i.e., there exists no furtherm ∈ M\B with ∀g ∈ A : (g,m) ∈ I

A formal concept (A,B) describes in a formal way a concept by specifying with A (the so-called
concept extent) which objects belong to the concept and by simultaneously specifying with B (the
so-called concept intent) which attributes characterize the concept. The set of all formal concepts
is itself partially ordered by the subconcept/superconcept relation ⊑ that is naturally defined as

(A,B) ⊑ (C,D) : ⇐⇒ A ⊆ C & B ⊇ D.

The analysis of this partially ordered set, which turns out to be actually a complete lattice, is the
business of formal concept analysis. With the derivation operators

Φ :2M −→ 2G : B 7→ B′ := {g ∈ G | ∀m ∈ B : (g,m) ∈ I}
Ψ :2G −→ 2M : A 7→ A′ := {m ∈ M | ∀g ∈ A : (g,m) ∈ I}

4For a comprehensive introduction into FCA, see Ganter and Wille [2012].
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one can characterize formal concepts as

(A,B) is a formal concept ⇐⇒ A = Φ(B) & B = Ψ(A).

Furthermore, as can be seen from above, the extent A of a formal concept (A,B) uniquely defines
its intent B as B = Ψ(A) and the intent B uniquely defines the extent via A = Φ(B). Therefore,
the whole structure of K can also be uniquely described by only looking at extents. Then, the
family of all extents is a closure system (i.e., a family of subsets that contains G and that is addi-
tionally closed under arbitrary intersections). This closure system can be alternatively described
by the closure operator γ := Φ ◦ Ψ: The extents are exactly the images of this closure operator.
Another way for describing the structure of K is to use so-called formal attribute implications:
A formal attribute implication is a pair (X,Y ), denoted with X −→ Y , where X,Y ⊆ M are
attribute sets. A formal implication is valid in a formal context if all objects that have all at-
tributes in X do also have all attributes in Y . Then the family of all formal concept intents
can be described as the family of all attribute sets B ⊆ M that respect all valid implications
X −→ Y (, i.e., if B ⊇ X then also B ⊇ Y for all valid implications X −→ Y ). Dually, by
changing the roles of objects and attributes, one can work with formal implications between ob-
ject sets and this is somehow building a natural bridge to more conventional approaches to data
analysis: For example in a linear space, there is a natural notion of location: One can say for
example that a point q lies between the points p and r, if q is a convex combination of p and r.
In other words, if q lies in the space spanned by p and r. In terms of formal concept analysis this
may be translated to q lying between p and r if q lies in the space spanned by p and r, i.e., if
q ∈ γ({p, r}), or in terms of formal object implications, if {p, r} −→ {q}. With this abstraction,
it is in fact possible to translate certain notions like for example unimodality of a function to
the setting of formal concept analysis. In our first three contributions we made much use of this
idea to bring to together the theory of formal concept analysis and the methodology of data depth.

Data depth

The methodology of data depth is a non-parametric approach that goes back to Tukey (see Tukey
[1975]) who used it as a graphical tool for descriptively vizualizing bivariate data. Since then,
the methodology was extended to the general multivariate case of Rd-valued data: Generally
speaking, a data depth function measures how deep or outlying a given data point z ∈ Rd is
located with respect to an observed data cloud or an assumed underlying distribution in Rd. With
this, data depth provides a center-outward ordering of points in Rd. This can be used for a whole
bouquet of non-parametric (and usually robust) multivariate statistical analyses. Applications
range from the description of multivariate distributions (Liu et al. [1999], Serfling [2004], Wang
and Serfling [2005]) over outlier detection (Serfling [2006], Zhang [2002]), depth based classification
and clustering (Ruts and Rousseeuw [1996], Christmann [2002], Jörnsten [2004]), rank and sign
tests (Brown and Hettmansperger [2018], Hettmansperger and Oja [2018]), multivariate density
estimation (Fraiman et al. [1997]) to robust linear regression (Rousseeuw and Hubert [1999]).
Starting from the first proposal of Tukey, a whole bunch of different new concrete proposals for
depth functions were developed. Additionally, certain desirable properties a depth function should
have, were formulated. These concern structural properties like affine equivariance (see Serfling
and Zuo [2000]), statistical properties like uniform consistency (cf., e.g., Liu [1990], Arcones and
Gine [1993]) and robustness properties like a high breakdown point (cf., e.g., Donoho and Gasko
[1992]). Beyond the case of Rd, in the meanwhile the methodology of data depth was also applied
to functional data (Dai and Lopez-Pintado [2022]) or data in a metric space (Geenens et al. [2023],
Chakraborty and Chaudhuri [2014]). Our contributions in this habilitation still prolongs the area
of application of data depth by using it in the context of data that can be represented by a formal
context. Due to the flexibility of the method of conceptual scaling, this in fact allows a broad
application of data depth to many examples of non-standard data analysis. In our first and our
third contribution, we deal with the case of data that are partially ordered sets on a given finite
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basic set of items. Contribution 2 develops and analyzes properties of depth functions in the
general setting of arbitrary formal contexts/data-settings.

4.2 Our contributions

Contribution 1

Blocher, H.; Schollmeyer, G.; Jansen, C. (2022): Statistical models for partial orders based
on data depth and formal concept analysis. In: Ciucci, D.; Couso, I.; Medina, J.; Slezak,
D.; Petturiti, D.; Bouchon-Meunier, B.; Yager, R.R. (eds): Information Processing and
Management of Uncertainty in Knowledge-Based Systems. Communications in Computer
and Information Science, 1602:17-30.

Original Abstract

In this paper, we develop statistical models for partial orders where the partially ordered char-
acter cannot be interpreted as stemming from the non-observation of data. After discussing
some shortcomings of distance based models in this context, we introduce statistical models
for partial orders based on the notion of data depth. Here we use the rich vocabulary of
formal concept analysis to utilize the notion of data depth for the case of partial orders data.
After giving a concise definition of unimodal distributions and unimodal statistical models of
partial orders, we present an algorithm for efficiently sampling from unimodal models as well
as from arbitrary models based on data depth.

Within this paper we are dealing with the special case of data sets where each data point is a
partial order (poset for short). In this situation, a relational approach appears very natural. In
fact, while for the case of total orders, which build a (non-Abelian) group, also group theory can be
used (and is used, cf., e.g., Diaconis [1988], Lebanon and Mao [2007], Goibert et al. [2022]), for the
more general class of partial orders, the hierarchical approach of lattice theory is very promising5.
As far as we are aware of, such an approach for the statistical modeling of poset-valued data is
not very intensively studied and therefore we think that our contribution in this field is of high
value.

Concretely, in this paper we use the language of formal concept analysis and combine this language
of applied lattice theory with the concept of data depth that is usually only used for data sets
with values in Rd, functional data or data with values in a metric space, cf., e.g., Mosler [2013],
Mosler and Polyakova [2012], Dai and Lopez-Pintado [2022], Geenens et al. [2023], Chakraborty
and Chaudhuri [2014]. Within our contribution we see partial order data as a very interesting
example of non-standard data. In particular, we take here the special viewpoint that the envis-
aged orders are only partially ordered not because of the non-observation of total orders, i.e., we
do not assume that the partial orders arise due to a censoring process. Such a viewpoint can be
found in many existing approaches like e.g., Nakamura et al. [2019], Lebanon and Mao [2007].
There, an underlying total order together with a coarsening process is assumed and modeled.
In contrast to this approach that can be termed epistemic (cf., Couso and Dubois [2014]), here,
we hold the ontic view that understands partial orders as partially ordered by nature. To give
a concrete example: In Dittrich et al. [1998] university students were asked for their choices of
foreign universities for their semester abroad. Concretely, the students preferences were collected
via pairwise comparisons between (all-together 6) universities. The students could say that they

5Note that also for partial orders, e.g., Lebanon and Mao [2007] use group theory. However, there, partially
ranked data are treated as censored data. In this way, this approach does not directly fit well to our ontic view on
partial orders hold within our paper, see below.

10



prefer one university over another or vice versa. Additionally, they could also answer that they
have no preference between two given universities. In this situation it appears very natural to
assume that an observed incomparability between two universities does not mean that the asked
student does not know his preference or that she forgot to answer the question about preference.
Instead, one can in fact say that the student has no preference between the given universities at all.

To account for this special viewpoint, we use the method of conceptual scaling from formal concept
analysis: We do not only use attributes of the form x ≤ y (with the interpretation that university
y is preferred to university x or that one is indifferent between x and y). Instead, we also include
attributes of the form x ≰ y. This special way of incorporating FCA leads to a special behaviour
of our method, as is analyzed in the paper (Section 4 of the contribution). The other ingredient
of our proposed method is the usage of data depth to build a concise statistical model for partial
order data that can be specified by defining one location and one scale parameter. With this, in
fact our paper is an important contribution to the old

“ ...major outstanding problem in ranking theory [at the present time]. This is simply to find
some method of specifying a population of ranks in the non-null case. If we have a ranking of
n which can happen in n! ways, then in order to specify such a population in general we require
n! parameters. This is far too large a number for any tractable mathematics to be applied to it.”
[Kendall, 1950]

In fact, compared to the above statement that relates to total orders, for partial orders, the situa-
tion becomes far more dramatic. For example for partial orders of 8 items, compared to 8! = 80640
total orders, there are all-together 4.431.723.379 partial orders (see, e.g., Brinkmann and McKay
[2002]). Therefore (also 73 years later) it would be of high interest to be able to define parametric
models for partial orders that are specifiable by only a few number of parameters and that at the
same time appreciates our ontic view on partial orders.

Compared to our data depth approach, the most usual statistical models for (partial) orders are
based (or can be based) on a notion of distance between one modal order and all other orders
and a probability function that decreases with increasing distance. Therefore, in our paper we
also discuss the relation of our approach to such models (Section 2 of the contribution), especially
some shortcomings w.r.t. our ontic understanding of partial data within our paper.

Additionally, already within this paper we discuss certain properties a depth function or a prob-
ability model should have. One property that is emphasized here is the property of quasicon-
cavity or unimodality (cf., Definition 1 in the paper). This notion can be perfectly described
in the language of formal (object) implications from FCA: If one data point y lies within the
space that is spanned by other points x1, . . . , xk (in the sense that {x1, . . . , xk} → {y}), then
the depth value of y should at least be not smaller then the depth value of all x1, . . . , xk (i.e.,
depth(y) ≥ min{depth(x1), . . . , depth(xk)}). This property in a sense formalizes the demand that
the depth function should not have any local minimum.

In this way we in fact fruitfully combine the theory of formal concept analysis and the theory of
data depth to derive a way of statistically modeling partial order data.

In Section 5 of the paper we develop concrete proposals for a depth function that - together with
a probability decay function (Equation 1 in the paper) - builds our statistical model. Since we
are interested in unimodal models where the notion of unimodality (cf., Definition 1) is a natural
adaption of classical unimodality/quasiconcavity for classical depth functions (cf., Mosler [2013]),
we have to firstly analyze the mathematical implications of unimodality. Actually it turns out
that on a general formal context, as well as concretely on the formal context of all partial orders,
it is impossible to define a strictly unimodal depth function (where strictly means that the ≥ from
above is replaced by >) and therefore it is impossible to define a strictly unimdoal probability
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model. Thus, we have to live with depth functions and statistical models that are only quasicon-
cave/unimodal. Furthermore, as worked out in the paper, it is generally very difficult to come up
with a quasiconcave depth function that is not trivial. In our contribution, we concretely analyze
three generalizations of depth functions to the case of partial order data, namely I) a generaliza-
tion of Tukeys depth, II) a generalization of the convex hull peeling depth and III) a new depth
function that we call enclosing depth and on which we base our final solution IV):

I) Generalized Tukeys depth The generalized Tukeys depth function for general data struc-
tures is a generalization of the classical Tukeys depth (cf., Tukey [1975]) for Rd to arbitrary kinds
of non-standard data that can be represented by a formal context. This depth function is based on
Schollmeyer [2017a,b] and was formally introduced in Blocher et al. [2022]. In Schollmeyer [2017a]
it was introduced as a depth function for data that are elements in a complete lattice. Since
every formal context is naturally endowed with the complete lattice of all its concept extents, this
depth function can be used for arbitrary formal contexts. Note that there the depth function is
not called Tukeys depth. Instead, there we speak about the level function which is an antitone
transformation of what is termed Tukeys depth function in Blocher et al. [2022]. In its original
form for Rd, Tukeys depth (also called halfspace depth) defines the depth of a point z ∈ Rd w.r.t.
a probability law P as the infimal probability of a halfspace that contains the point z. If one treats
Rd in a manner of synthetic geometry, then it appears natural to look at the incidence between
points and halfspaces. The connection to formal concept analysis is then given by the observation
that the closure system of all (closed) convex sets is generated by all possible intersections of
(closed) halfspaces. In this view, it turns out that it is technically more intuitive to think in terms
of outlyingness instead of depth. The outlyingness of a point z ∈ Rd w.r.t. a probabilitiy law P
can then be defined as the supremal probability of an open halfspace that does not contains the
point z. This definition is equivalent to the definition of oultlyingness of a point z as the supremal
probability of a convex set (i.e., in terms of FCA: a concept extent) that does not contain the
point z. This straight-forward generalization of Tukeys depth gives in fact a (quasiconcave) depth
function that is applicable for arbitrary data types that can be represented with a formal context
(or a complete lattice).

It turns out that for our concrete statistical modeling problem for partial order data, the model
that would be obtained by applying Tukeys depth in its original form leads to a quasiconcave,
but in particular to a more or less trivial statistical model. Concretely, the obtained probability
function has only two different values.

II) Generalized convex hull peeling depth Thus, we also analyze the possibility of general-
izing the convex hull peeling depth (cf., Barnett [1976]) from the case of Rd to the case of general
spaces that can be described by formal contexts. The idea behind the convex hull peeling depth is
that one peels different layers from a data cloud from outwards to inwards to get different depth
layers. One starts with the extreme points of the data cloud end removes them. Then one proceeds
with the remaining data points and again peels the extreme points and so on. The reason why this
construction is well defined and leads to a (to a certain extent) satisfying depth function is the fact
that the complete lattice of (closed) convex sets (projected on a fixed set of finitely many observed
data points) in Rd is a meet-distributive6 lattice, which means that every convex set is the convex
hull of its extreme points7. Unfortunately, the formal context of all partial orders builds a concept
lattice that is not meet-distributive. Therefore, different non-uniqueness issues come into play.
Within every step of peeling, there are different candidates of possible layers that one can remove.
For example, in every peeling step one can remove all extreme points and all other points that
otherwise would not be removed at some later step of removing extreme points. Another possi-

6In terms of closure operators, meet-distributivity is directly related to the anti-exchange property, cf., Edelman
[1980].

7With convex hull we mean the usual convex hull in Rd, but projected on the data points that are actually
observed. And consequently with convex set we mean a set that is the projection of a set that is convex in the
usual sense.
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bility would be to remove a layer that formally implies all remaining points and that is minimal
w.r.t. this property, etc. Depending on how one solves this issues, either one will get a quasi-
concave depth function with many ties (i.e., many identical depth values and therefore also many
identical values of the associated probability function) or a depth function that is not quasiconcave.

III) Enclosing depth A third approach for a depth function is completely newly developed in
the contributing paper, namely what we now call the enclosing depth. The basic idea is very
simple and in a certain way dual to the construction of the peeling depth: Compared to the clas-
sical applications of data depth, a main difference of our problem setting of defining a statistical
model based on data depth is the following: Usually one uses data depth in particular to define
the center or the most central point(s) of a given data cloud or probability law. Additionally,
one would like to specify this center in a robust way. Therefore, especially the application of the
peeling depth appears very counter-intuitive because one starts the peeling with the most outlying
layers, which suggests that the obtained method is not very robust. In fact, the breakdown point8

of the convex hull peeling depth is very low, cf., Donoho and Gasko [1992], concretely for normally
distributed data in Rd it seems to tend to zero as n increases (cf., Donoho and Huber [1983]).
However, in our very comfortable situation of specifying a statistical model, we are able to specify
beforehand, where the center should be. Thus, this non-robustness aspect is not relevant at all in
our situation. Additionally, opposed to the construction of the peeling depth we can start with the
center. Instead of peeling layers from outside to inside, we can simply start with the center and
step by step we can enclose additional layers. This is simply the basic idea behind the enclosing
depth. To concretely define the enclosing depth one needs to specify an enclosing operator that
encloses an additional layer to the already defined layers. Similar to the peeling depth where one
needs a peeling operator that removes layers, also for the enclosing depth we have to face some
serious non-uniqueness issues and additionally, we would get a depth function that is generally
not quasiconcave.

IV) The solution: Weighted Tukeys depth informed by the enclosing depth Finally,
to define a depth function that is both quasiconcave and non-trivial at the same time, we mod-
ify Tukeys depth (which is already quasiconcave) by weighting the maximum (Equation 2 in the
contribution) that is involved in Tukeys depth. To get reasonable weights we use here a careful
analysis of the enclosing depth. In this way, the enclosing depth helps in getting our final proposal.
The analysis of the enclosing depth shows that for example if the modal order µ sets x ≤µ y but
another order ν sets x ≰ν y, then (’ceteris paribus’) the depth of ν depends particularly on the
number of elements between x and y (w.r.t. µ). This can be naturally reflected by accordingly
weighting the maximum in Equation (2). As already stated, one main demand within our con-
tribution is to hold an ontic view and to include both the aspects of comparable items, as well
as incomparable ones. Therefore, one should also specify how a pair (x, y) is weighted if it is
incomparable w.r.t. the mode µ but comparable w.r.t. the envisaged order ν. For this we use a
general proposal for defining distances between objects in a partial order or a complete lattice, see
Gäbel-Hökenschnieder et al. [2016].

All-together, with this final solution we are now able to specify with one location parameter and
one scale parameter (plus maybe one parameter for specifying how comparable and incomparable
items are balanced and additionally a specification of the shape of the decay function) reasonable
non-null models for partial orders on a finite ground space.

Finally, in Section 6 of the contribution we present a specific algorithm for sampling from such
models. The basic idea of the algorithm is to firstly sample a total order and afterwards to sample
from the obtained total order a partial order by removing edges from it. To calibrate the sampling
probabilities we firstly compute (analytically) the obtained sampling probabilities and secondly

8Roughly speaking, the breakdown point of a robust method is the maximal amount of contaminated data the
method can deal with before giving completely unreasonable results.
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we correct for them with an acceptance-rejection method (cf., Ganter [2011]).

Contribution 2

Hannah Blocher and Georg Schollmeyer (2023): Data depth functions for non-
standard data by use of formal concept analysis. Under review. Accessi-
ble under https://www.foundstat.statistik.uni-muenchen.de/personen/mitglieder/

blocher/blocheretal_properties23.pdf

Original Abstract

Data depth functions have been intensively studied for normed vector spaces. However, a dis-
cussion on depth functions on data where one specific data structure cannot be presupposed
is lacking. In this article, we introduce a notion of depth functions for data types that are not
given in statistical standard data formats and therefore we do not have one specific data struc-
ture. We call such data in general non-standard data. To achieve this, we represent the data
via formal concept analysis which leads to a unified data representation. Besides introducing
depth functions for non-standard data using formal concept analysis, we give a systematic
basis by introducing structural properties. Furthermore, we embed the generalised Tukey
depth into our concept of data depth and analyse it using the introduced structural proper-
ties. Thus, this article provides the mathematical formalisation of centrality and outlyingness
for non-standard data and therefore increases the spaces centrality is currently discussed. In
particular, it gives a basis to define further depth functions and statistical inference methods
for non-standard data.

In this paper we extensively discuss and analyze several generalizations of structural properties of
depth functions on formal contexts beyond quasiconcavity. Furthermore, we propose additional
properties that become only visible and relevant within the very abstract setting of formal concept
analysis. In the second part of the paper we study these properties in detail for the generalized
Tukeys depth (cf., also Contribution 1). More concretely, in the first part of the paper, we for-
mulate representation properties, order preserving properties, empirical (sequence) properties and
universality properties. The representation properties and the order preserving properties were
already studied (to some extent) for the case Rd (see Serfling [2006], Mosler [2013]) and can be
more or less directly generalized to the case of depth functions for formal concept analysis. For
example, regarding Rd, the idea of the representation property of affine equivariance is motivated
more or less by measurement theoretic considerations that state that the result of a data depth
based analysis should not depend on the concretely used coordinate system. This idea can be
translated to an underlying space that is implicitly given by a formal context. One could argue
that it should not matter, which concrete attributes a data point has, it should only matter which
structure - given by the lattice/closure system of all formal extents or alternatively by all valid ob-
ject implications - the objects constitute. This argument can be motivated by the understanding
that the implications between the objects (or the lattice/closure system of all extents) somehow
characterize how the the data points/objects are located in the space that is implicitly given by the
underlying formal context. This consideration constitutes our property (P1). Similarly, property
(P2) demands that a depth of a data point should not depend e.g., on its name, therefore different
objects with the same attributes should have the same depth.

The ordering preserving properties (P3) and (P4) are adaptions of the properties vanishing at
infinity and maximality at the center known from Rd. These properties already show that for a
space of data points that is only equipped with a closure system and not with the comfortable
structure of a vector space (and particularly with an operation of translation), it is more difficult
to get an intuitive sense of what should naturally be the center w.r.t. a depth function and which
data points should be regarded as extreme outliers. In Rd it is easy enough to specify notions of
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symmetry, e.g., of point symmetry, and then it is intuitive to demand that for symmetric distribu-
tions with point of symmetry s should have maximal depth at point s. Also the extreme outliers
could be easily and intuitively characterized as points z with very large norm ||z||. In the context
of formal concept analysis, in general, we do not have a metric and strong notions of symmetry
(but compare Theorem 1 of our contribution). However, it is possible to specify a weak notion
of centrality and extreme outlyingness: objects that lie in no extent (despite the trivial extent
G), should have minimal depth (property (P3)) and objects that lie in every extent should have
maximal depth (property (P4)).

The ordering preserving properties (P5) till (P8) are all weakenings and strengthenings of quasi-
concavity with (P8) being the property of strict quasiconavity. Strict quasiconcavity is actually a
very strong property. There exists formal contexts for which there exists no strictly quasiconcave
depth function (cf., Theorem 3 of the contribution and also (the discussion of) Contribution 1).

The ordering preserving property (P9) (reflecting betweenness) is some kind of the reverse prop-
erty to the strict quasiconcavity property: If one data point x has a larger depth than another
point y, then this should have some reason that is rooted in the location of x compared to y and
all other data points in the sense of the underlying implicational structure underlying the con-
text. Note that this property does not rely on the underlying probability measure on the context
and may therefore be judged as a little bit too strong, especially in the light of the fact that for a
meet-distributive finite context without duplicates there is essentially only one depth function that
is strictly quasiconcave and betweenness-reflecting. Namely, this is the peeling depth (compare
Theorem 5 of the contribution and Contribution 1).

The empirical (sequence) properties (P10) and (P11) are not adaptions of existing properties for
Rd but new developments. They are properties that make statements comparing an empirical
depth function for different data sizes. Property (P10) states that adding an (arbitrary) object g
to a context which is a duplicate of an already existing object from the original context will always
increase the depth of this object. For property (P11) firstly define an object gdiff as an object
that strongly differs from the other objects if this object has no attribute that any other object
has. Property (P11) then states that adding a strongly differing object gdiff will not change the
ordering of the depths of the other objects. The empirical (sequence) property (P12) is the clas-
sical property of uniform convergence of the empirical depth function to the population version
depth function (almost surely) under an i.i.d. sampling.

The universality properties (P13) and (P14) are also newly developed. They try to capture the
problem that there are formal contexts for which there exists no strictly quasiconcave depth func-
tion. The idea of these properties is borrowed from category theory. They try to do justice to the
fact that the demand of only quasiconcavity is not enough because for example a constant depth
function is always quasiconcave but not interesting. Therefore, these properties try to formulate
what it means for a depth function to be as strictly quasiconcave as possible. We use here the
notion of a free object. We call a depth function D free w.r.t. a set of properties (not necessarily
quasiconcavity) if it can imitate every other depth function E that also has these properties by
equipping D with an appropriate underlying probability law and and by composing it with an
isotone function, i.e., E equipped with a given law P and D equipped with an appropriate other
law Q (that may depend on E and P ) are order-theoretically equivalent (except for the fact that
we allow for E having more ties in its depth values than D).

Depending on if we allow for Q to be arbitrary (depending on E and P ) or if we restrict Q to an
arbitrary small neighborhood model of laws, we get one notion of weak freenness (P13) and one
notion of strong freeness (P14). Importantly, in the contribution we show that there are strongly
(and weakly) free depth functions (w.r.t. quasiconcavity), at least for certain formal contexts (cf.,
Theorem 7 and Theorem 11). Therefore, the newly introduced universality notions are not empty
notions.
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In the second part of the paper, we analyze the generalized Tukeys depth w.r.t. all properties. The
generalized Tukeys depth has (partly under some assumptions) most of the properties. Exceptiions
are (P8), (P9), (P11) and (P14). Particularly, the fact that there are strongly free depth functions
(w.r.t. quasiconcavity) on certain contexts for which the generalized Tukeys depth is not strongly
free is a motivation for searching for new depth functions, since, very intuitively speaking, the
non-freenness of the generalized Tukeys depth means that one can expect to have often a small
number of different depth values which is of course a clear disadvantage for any kind of data depth
analysis.

Contribution 3

Hannah Blocher, Georg Schollmeyer, Christoph Jansen and Malte Nalenz (2023): Depth
Functions for Partial Orders with a Descriptive Analysis of Machine Learning Algorithms. In:
Proceedings of the Thirteenth International Symposium on Imprecise Probabilities: Theories
and Applications (ISIPTA ’23). Proceedings of Machine Learning Research, 215:59–71.

Original Abstract

We propose a framework for descriptively analyzing sets of partial orders based on the concept
of depth functions. Despite intensive studies of depth functions in linear and metric spaces,
there is very little discussion on depth functions for non-standard data types such as partial
orders. We introduce an adaptation of the well-known simplicial depth to the set of all
partial orders, the union-free generic (ufg) depth. Moreover, we utilize our ufg depth for a
comparison of machine learning algorithms based on multidimensional performance measures.
Concretely, we analyze the distribution of different classifier performances over a sample of
standard benchmark data sets. Our results promisingly demonstrate that our approach differs
substantially from existing benchmarking approaches and, therefore, adds a new perspective
to the vivid debate on the comparison of classifiers.

In this contribution we applied another generalized depth function for partial orders in the context
of benchmarking machine learning algorithms. The used depth function was a generalization of the
simplicial depth (Liu [1990]) to the case of partial order data. Also there we used the techniques
of formal concept analysis and in particular the method of conceptual scaling to define the depth
function. The definition of this depth function (we call this depth function the union free generic
depth function, or shortly, ufg-depth) is based on a special family of characterizing implications
(the so-called union free generic base, which was introduced in Blocher [2020]). Such a family is
a special set of formal implications from FCA that in a certain sense describes the whole closure
system of all concept extents that itself characterizes the given formal context and therefore the
whole data set. While the classical simplicial depth in Rd defines the depth of a data point z as
the proportion of d+1-simplices in the data set that contain the point z, the ufg-depth of a point
z is the proportion of ufg-premises from the ufg-base (potentially weighted by their cardinality)
that formally imply the point z.

One aspect within the contribution is the structural analysis of the ufg-base and the ufg-depth
for the special case of partial order data with the conceptual scaling that was aleardy used in
Contribution 1. It shows up that for example the maximal cardinality of an ufg-premise can be
bounded by the VC dimension of the corresponding closure system of the concept extents (cf.,
property (P7) in the contribution). This, together with a further property that states that the
family of ufg-premises is in a certain sense connected (cf., property (P8) of the contribution and
Schollmeyer and Blocher [2023]) allows a more efficient enumeration of all ufg-premises and allows
therefore the computation of the ufg-depth in reasonable time. Properties (P3) and (P4) give
insight into how the sample and particularly outliers affect the ufg-depth. This shows that it is
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worth going also beyond the very general framework of Contribution 2 and to look at the math-
ematical implications of special cases of data structures together with concrete conceptual scalings.

Next, in the contribution, we use the ufg-depth to descriptively analyze the performance of dif-
ferent machine learning classification algorithms over a set of data sets and over a set of different
performance measures: If for one fixed data set one defines one classifier as at least as performa-
tive as another if it is at least as performative w.r.t. all considered performance measures, then
one gets a partial order over the set of all considered classifiers. Since one has not only one data
set, but a whole sample of data sets, all-together one gets a sample of data points that are itself
partial orders. Such a sample was descriptively analyzed in this paper. Compared to the classical
benchmarking task, within this paper we were therefore able to enrich the toolbox for classifier
comparison w.r.t. at least two additional aspects:

Firstly we could do an analysis w.r.t. a whole set of performance measures. As also stated in
the conclusion of the paper, the methodology of using partial orders still allows far more ways of
comparison: For example one could use receiver operating characteristic (ROC) curves (see, e.g.,
Fawcett [2006], cf., also the methodology developed in Chang [2020]) instead of a set of classical
performance measures and one could say that one classifier is as least as performative as another
on a given data set if its ROC curve lies always above the ROC curve of the other algorithm.9

Secondly, with the methodology of data depth we are able to analyze not only the obtained partial
orders on every data set separately. Instead we can now analyze the whole distribution of the par-
tial orders within our data sample: The location of the distribution can be analyzed by looking at
the deepest data point(s), i.e., the deepest partial order within the sample. This partial order to a
certain extent gives a ’typical’ data set together with a typical ordering of classifiers. Also outliers
can be detected by looking at data points with very low depth. Additionally, a qualitative impres-
sion about the dispersion of the distribution can be given by looking at all depth contours10. On
the other hand, the dispersion can be concisely described quantitatively by looking at all partial
orders, i.e., also partial orders that were not observed, and by computing the proportion of partial
orders that have a depth value above a certain threshold. In this sense, in a way one “measures”
the volume of the depth contours. Actually in the concretely analyzed data set the dispersion
was very low given the high variability of the included data sets. This suggests that in fact the
methodology proposed here seems to give insightful information about the data situation.

4.3 Related Work & Future Research

As already indicated, the generalized Tukeys depth is based on Schollmeyer [2017a,b]. For the spe-
cial case of data that are total orders, this depth function was also already applied in Schollmeyer
[2017b]. There, the phenomena of the wisdom of the crowd (cf., Surowiecki [2004]) in the special
context of ranking data was analyzed. We used a ranking task from Lee et al. [2014] where the
participants of a study were asked to rank the former 44 US presidents according to their time of
presidency. Among other things, we analyzed the statistical model fit of different classical mod-
els for rankings (concretely the models described in Biernacki and Jacques [2013] and Lee et al.
[2014]). For this, we used the generalized Tukeys depth. Another application of the generalized
Tukeys depth can be found in Jansen et al. [2018a] where we used the generalized Tukeys median
as an aggregate for a consensus order in the context of social choice theory.

So far, beyond some statistical tests of model fit in Schollmeyer [2017b], we did only descriptive
analyses. If the analyzed data set can be assumed to be an i.i.d. sample from some underly-

9Alternatively, instead of looking at the whole ROC curves one could also look only at a certain range of the
ROC curves where the classifiers are usually applied. This would lead to more dense partial orders. Therefore, with
this one has some possibility to flexibly scale the partiality of the observed partial orders.

10A depth contour of level λ is the set of all data points that have a depth of at least α.
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ing population, it is natural to also consider statistical inference. At the time we are preparing
a paper (Blocher et al.) that deals with statistical tests as well a regression for non-standard
random variables that can be treated with one of our developed depth functions. For a two sam-
ple location test, a permutation based approach can be used. Concretely, one can more or less
straight-forwardly adapt the permutation test from Li and Liu [2004] which is based on depth vs.
depth plots (DD plots). Both the T -based test, as well as the M -based test described in Li and
Liu [2004] can be adapted. In fact, we were already able to generalize both tests to a test with one
parameter λ ∈ [0, 1] that controls the type of the test. For λ = 1 one gets a test that really tests
for different locations (this corresponds to the M -based test). For λ very small one gets a test that
more or less tests, if the distributions in both subsamples are in a specific sense separated (this
corresponds to the T -based test). The idea behind this generalization of the test is to maximize
the depth of a data point w.r.t. one subsample under the constraint that the depth of this point
w.r.t. the other subsample is above some threshold. (This threshold is controled by the parameter
λ). Opposed to the case Rd, the question if one optimizes over all possible data points or if one
optimizes e.g., only over all observed data points, becomes more crucial because for non-standard
data the (notion of) dimensionality of the underlying space is to some extent unclear in the first
place and could possibly be too high. Therefore, we are currently also investigating possibilities
for regularizing our proposed test. For a one-sample test, the situation seems to be still more
unclear, because one has to somehow specify the distribution under the null hypotheses. Another
possibility would be to rely on bootstrapping. However, for example for partial order data, the
situation here is still very non-standard: For example a mirroring approach (cf., e.g., [Hesterberg,
2015, Section 4.2])11 for constructing a reverse bootstrap percentile confidence interval is not pos-
sible because we are not equipped with an invertible group operation, here. For parametric tests,
the parametric models developed in Blocher et al. [2022] can be used. Also non-parametric tests
for dispersion or shape seem to be more difficult to develop, but we still plan to propose some
sort of such tests by working with a (possibly parametrically specified) reference distribution. For
regression, our ideas are still in its first stages. Since all depth functions considered so far can be
easily equipped with weighting schemes, non-parametric kernel-like techniques seem to be appli-
cable, here.

Beyond concrete proposals and applications of depth functions, within the methodology of data
depth, already for Rd there is usually also an emphasis of structural properties a depth function
should obey (cf., also Contribution 2). This is useful firstly to understand the inner workings
of a given depth function and secondly to classify and categorize the rich class of possible depth
function proposals. For non-standard data, this aspect becomes at the same time i) more rich and
ii) more meagre:

i) Within the approach of FCA to data depth, we are able to treat different data types within the
same framework. Therefore we are able to study for example the invariants (and variances) of a
depth function both within a restricted data type, as well as across different data types.

ii) Different notions known from Rd become more difficult to capture or can still become more or
less empty concepts: For example the property maximality at center (cf., e.g., Serfling and Zuo
[2000]) in the concrete statement that a depth function should be maximal at the center of sym-
metry would need the notion of a symmetric distribution. In Rd, point symmetry can be based
on the notion of a translation. However, for many non-standard data, like for example partial
orders, a notion of translation is (partly) missing. A very weak notion of point symmetry that
uses an involution that models a mirroring of a point on a possible center s of symmetry is used
in Theorem 1 of Contribution 2. (Compare also Section 5.3 where a translation group for the case
of partial order data in the context of social choice theory is shortly discussed.) However, if this
notion of point symmetry can be often fulfilled in relevant cases is a question of further research.
Alternatively, for Rd another notion of symmetry which is of course a stronger one is the notion of

11However, note further that such an approach is often not a good idea, see [Hesterberg, 2015, Section 4.4].
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rotational symmetry: One could say that a law P is symmetric around a point z if it is invariant
under all isometries with fixpoint z. If one would have a synthetic approach to the geometry of Rd

and only looks at the incidence of e.g., points and halfspaces, then it appears natural to look at
all (continuous) automorphisms that keep the combinatorial structure of incidence between points
and halfspaces12 (and in particular map halfspaces to halfspaces) and that have one fixpoint z.
Then for example a stretching of one coordinate axis would also be such an automorphism and
essentially there cannot be any non-trivial law P that is invariant under all such automorphisms.
Therefore this notion of a symmetric law would be empty within this formalization.

As already mentioned, there are formal contexts for which there is no strictly quasiconcave depth
function at all. Therefore it is of high interest to characterize, for which formal contexts there
is a strictly quasiconcave depth function. Additionally, there are many interesting formal con-
texts (including the case of partial order data) where there exists no strictly quasiconcave depth
function. Therefore, we intend to also study the existence of depth functions that are free w.r.t.
quasiconcavity. Our current insights suggest that the ufg-depth is a promising candidate for such
a (strongly) free depth function. This is only one of many reasons why we intend to further
study the ufg-depth in another contribution (Blocher and Schollmeyer), from a structural, from a
computational and also from a statistical perspective.

12A depth function that is invariant under such automorphisms is called a combinatorial depth in Mosler [2013].
Funnily enough, the classical notion of affine equivariance looks at the broader class of linear mappings instead
of only isometries, therefore, the exact conceptual treatment of Rd in a geometric fashion seems to be a little bit
unclear.
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5 B: Decision Making under weakly structured information

5.1 Introduction

Measurement theoretical considerations do also play an important role in decision theory. For
example the classical notion of first order stochastic dominance, which is aligned to an ordinal
scale of measurement, is a basic demand in decision theory. On the other hand, if the outcome of
an uncertain payoff has a cardinal scale like for example a random monetary payoff, then a reason-
able rationale for decision making is to apply expected utility theory, either directly by equating
money with utility or by using a specific utility function that for example accounts for decreasing
returns to scale. This would be directly related to second order stochastic dominance. However,
between these extreme cases there are also intermediate cases thinkable. The contributions of this
part are concerned with these intermediate cases: While the first contribution introduces the basic
mathematical apparatus and the general concepts, the second contribution deals with the explicit
elicitation of a decision maker in such an intermediate situation that one could call a situation of
weakly structured (partially ordinal and partially cardinal) information. The third contribution in
this part deals with notions of risk aversion, which are loosely related to the concept of second
order stochastic dominance. Instead of a cardinal scale of measurement that is usually assumed
for second order stochastic dominance, we deal here with an only (totally) ordinal scale of mea-
surement and show that still in this very weakly structured situation there are weak notions of
relative risk aversion establishable.

5.2 Our Contributions

Contribution 4

Christoph Jansen, Georg Schollmeyer, and Thomas Augustin. Concepts for decision making
under severe uncertainty with partial ordinal and partial cardinal preferences. International
Journal of Approximate Reasoning, 98:112–131, 2018.

Original Abstract

We introduce three different approaches for decision making under uncertainty if (I) there is
only partial (both cardinally and ordinally scaled) information on an agent’s preferences and
(II) the uncertainty about the states of nature is described by a credal set (or some other
imprecise probabilistic model). Particularly, situation (I) is modeled by a pair of binary rela-
tions, one specifying the partial rank order of the alternatives and the other modeling partial
information on the strength of preference. Our first approach relies on decision criteria con-
structing complete rankings of the available acts that are based on generalized expectation
intervals. Subsequently, we introduce different concepts of global admissibility that construct
partial orders between the available acts by comparing them all simultaneously. Finally, we
define criteria induced by suitable binary relations on the set of acts and, therefore, can be
understood as concepts of local admissibility. For certain criteria, we provide linear program-
ming based algorithms for checking optimality/admissibility of acts. Additionally, the paper
includes a discussion of a prototypical situation by means of a toy example.
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In this contribution we introduce the notion of so-called preference systems that can be used for
solving decision problems when the scale of measurement of the outcomes of the acts is neither
purely ordinal nor purely cardinal but somewhere between these extreme cases. Additionally, we
use these preference systems in a situation where also the information about the probabilistic
uncertainty of the considered states of nature is itself under additional epistemic uncertainty, or
where the uncertainty about the state of nature is not purely probabilistic, but instead described
by models of imprecise probabilities under an ontological understanding (cf., e.g., Walley and Fine
[1982]). Let A be a non-empty set that describes the possible outcomes within a decision problem.
A preference system is then a triple A = (A,R1, R2) where R1 ⊆ A×A is a preorder13 on A and
R2 ⊆ R1 ×R1 is a preorder on R1. The preference system models the preferences between certain
outcomes/alternatives in the following way:

• If a pair (a, b) is in R1, we interpret this as a is at least as desirable as b, that is a and b can
be ordered by preference. If neither (a, b), nor (b, a) is in R1, then a and b are incomparable.

• If a pair of pairs ((a, b), (c, d)) is in R2, then this is interpreted as exchanging alternative b
by alternative a is at least as desirable as exchanging alternative d by alternative c, that is,
a is more strongly preferred over b than c is preferred over d. If both ((a, b), (c, d)) /∈ R2 and
((c, d), (a, b)) /∈ R2, then the exchange of b by a is incomparable to the exchange of d by c.

Now, in decision theory the general problem situation is that one has to choose between a given
set G ⊆ AS of acts that can be seen as random variables that map from a space S of possible
states of nature to the set A of outcomes, i.e., if state s ∈ S is realized, then an act X ∈ G would
lead to the outcome X(s). In the most simple case the uncertainty underlying the realized state is
modeled by a probability measure π on S and the outcome space A is a subset of the reals which
directly measures the utility of an outcome in a cardinal manner. In this case, a classical and very
natural decision criteria is to choose an act X∗ ∈ G that maximizes expected utility, i.e., for which
we have

∀X ∈ G : Eπ(X
∗) ≥ Eπ(X).

Now, in our more complex situation, the outcome space does not directly codify metrically scaled
utilities. In fact there are no utilities present in the first place, one does only have relational
statements about preferences between outcomes or between exchanges of outcomes. Therefore,
one way to proceed would be (like also done in parts of the theory of stochastic dominance) to look
at the family of all utility functions that in a sense respect the relational preference structure given
by the preference system. Concretely, one could say for a possible utility function u : A −→ [0, 1]
that it respects a preference system A if we have

i) If (a, b) ∈ R1, then u(a) ≥ u(b) with equality iff additionally (b, a) ∈ R1

ii) If ((a, b), (c, d)) ∈ R2 then u(a)−u(b) ≥ u(c)−u(d) with equality iff additionally ((c, d), (a, b)) ∈
R2.

A preference system would then be called consistent if there is at least one utility function14 that
respects the preference system. For making decisions between acts from G one can then look
at the whole family U of all utility functions that respect a given preference system A. Due to
technical reasons, in the contribution we take the subfamily N of all utility functions u ∈ U that
are additionally normalized (i.e. inf{u(a) | a ∈ A} = 0 and sup{u(a) | a ∈ A} = 1).

In addition to the complexity/indeterminacy of the preferences, in our contribution we also allow
for a more complex situation regarding the uncertainty about the realization of the actual state
s ∈ S. Instead of a classical probability measure π over S we allow for any kind of uncertainty
model that can mathematically be modelled as a set M of probability measures that allows an

13A preorder on a set A is a reflexive and transitive binary relation on A.
14The demand that the utility function maps to [0, 1] is only a technical one, here.
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interpretation as the set of all probability measures that are in a certain sense compatible with our
uncertainty assessment15. Such kinds of uncertainty models can be found within a broad class of
different theories that can be more or less subsumed under the umbrella term imprecise probabil-
ities (for an introduction to imprecise probabilities, see, e.g., Augustin et al. [2014]). Examples
range from robust Bayesian analysis (Insua and Ruggeri [2012]) over generalized frequentist meth-
ods (Fierens [2009]), logical probability (Weichselberger [2007]), lower previsions (Troffaes and
De Cooman [2014]), interval probability (Weichselberger [2001, 2000]), non-parametric predictive
inference (Coolen and Augustin [2009]) to belief functions (Shafer [1976]) and possibility theory
(Dubois and Prade [1988]).

For the establishment of a concrete decision rule there are now many different ways to proceed.
In the contribution we present the following concrete three proposals:

I) Criteria based on generalized expectation intervals.

II) Criteria based on global comparisons.

III) Criteria based on pairwise comparisons.

We now shortly sketch the three approaches. For a detailed description we refer to the contribution.

I) Criteria based on generalized expectation intervals Here the idea is to generalize ex-
pected utility by replacing the expected value by the whole set of expected values that is obtained
by varying over all normalized utilities that respect the preference system and over all precise
probabilities π which lie in the set M (always assuming that the respective expectations exist).
Then, one can look at the upper and lower bounds of this set and define an expectation interval
for an act X as

EN ,M(X) :=

[
inf

u∈N ,π∈M
Eπ(u ◦X), sup

u∈N ,π∈M
Eπ(u ◦X)

]
.

For decision making one can then choose one act X∗ that maximizes i) the lower bound (maximin),
ii) the upper bound (maximax) or iii) a convex combination of the lower and the upper bound.
With this one will get i) a pessimistic and ii) an optimistic decision rule, as well as with iii) a
whole range of decision rules between these two extremes.

II) Criteria based on global comparisons Opposed to approach I) where one first computes
upper and lower bounds for each act X separately, in approach II one looks for every fixed pair
of utility u ∈ N and probability π ∈ M globally on all acts and checks for a candidate X if
Eπ(u ◦X) ≥ Eπ(Y ) for all Y ∈ G. Then, in a second step one quantifies over u ∈ N and π ∈ M.
In this sense, one looks globally on all acts in G. Depending on how one concretely quantifies,
different decision criteria appear. Concretely, in our contribution we define an act X to be

i) A | M-admissible if ∃u ∈ N ∃π ∈ M : ∀Y ∈ G : Eπ(u ◦X) ≥ Eπ(u ◦ Y )

ii) A-admissible if ∃u ∈ N ∀π ∈ M : ∀Y ∈ G : Eπ(u ◦X) ≥ Eπ(u ◦ Y )

iii) M-admissible if ∃π ∈ M ∀u ∈ N : ∀Y ∈ G : Eπ(u ◦X) ≥ Eπ(u ◦ Y )

iv) A | M-dominant if ∀u ∈ N ∀π ∈ M : ∀Y ∈ G : Eπ(u ◦X) ≥ Eπ(u ◦ Y )

Given one of these criteria, for decision making one would simply choose one act that fulfills this
criteria (if such an act exists). Note that we used here only quantifications where a ∀-quantor
follows an ∃-quantor and not vice versa. This means that at no point a certain utility u depends

15Some models of uncertainty, like e.g., possibility theory do not directly allow for such an interpretation but
usually could also be used because despite a lack of a possible interpretation of M as a set of compatible proba-
bility measures, mathematically the concretely obtained results are usually reasonable and still interpretable in an
appropriate decision theoretic manner.
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on the concretely envisaged probability π and also a certain probability π does not depend on the
concretely envisaged utility u. In this sense the above criteria are in an additional way global.

III) Criteria based on pairwise comparisons Here, we do to not look globally on all acts
simultaneously. Instead we only look at pairs of acts. Then we quantify over u ∈ N and π ∈ M like
done in approach II), but now without emphasis on a global viewpoint such that all-together six
combinations of quantifying can be done. Concretely, for X,Y ∈ G we define for the placeholders
□ and △ which can be replaced by the ∃-quantor or the ∀-quantor the binary relation R□△ via

(X,Y ) ∈ R□△ : ⇐⇒ □u ∈ N ;△π ∈ M : Eπ(u ◦X) ≥ Eπ(u ◦ Y ).

For decision making one would then choose an act from G that is a maximal element w.r.t. the
binary relation R□△. (Note that in general, only the relation R∀∀ is transitive. Therefore, for the
other relations one possibly would have to calculate the transitive hull beforehand.)

With the above decision criteria we have enlarged the toolbox for decision making, especially for
cases where the scale of measurement of the outcomes is non-standard. To make an example: If
M = {π} is a singleton and A ⊆ R is a bounded interval of the reals, R1 =≤ ∩A × A where ≤
is the usual ≤-relation on the reals and R2 = ∅. Then the relation R∀∀ is exactly the relation of
first order stochastic dominance.

If we replace R2 = ∅ by

R2 := {(a, b), (c, d) | a ≥ b; c ≥ d; a− b ≥ c− d}

then the generalized expectation interval of approach I) collapses to a point-interval that coincides
with the classical expectation.

If we replace R2 by

R2 := {(a, b), (c, d) | a ≥ b; c ≥ d; a− b ≥ c− d; a ≤ d}

then this would correspond to decreasing returns to scale and the relation R∀∀ would essentially
be second order stochastic dominance.

Now, with our notion of preference systems one is able to explicitly specify intermediate cases
between the extremes from above. To give one example: If the outcome space is describing the
self-described health status of a person, then usually there is one more or less clear cutting point
between good and bad. Though a variable like health would usually be treated as ordinal, instead
of R2 = ∅ (which would model this situation) one may say with some reason that an exchange
from a bad to a good health status (if it is not negligibly small) has more strength than an ex-
change within a good or within a bad health status. This could be naturally be implemented in
the relation R2.

Instead of directly varying the relation R2 by substance matter considerations, one could also try
to vary the size of the class of utility functions N . In our contribution we explicitly do this. We
introduce a kind of a granularity parameter δ ≥ 0 and modify the set N to the set

Nδ := {u ∈ N | ∀(a, b) ∈ PR1
: u(a)− u(b) ≥ δ & ∀((a, b), (c, d)) ∈ PR2

: a− b ≥ c− d+ δ}

where PR1 and PR2 denote the strict parts of R1 and R2, respectively. Then, this parameter can
be seen as some kind of regularization parameter that controls the size of Nδ. Larger values of
δ lead to a smaller set Nδ and therefore for example to a stronger ordering power of the relation
R∀∀. The parameter δ is inspired by the notion of a just notable difference from psychophysics (see
Luce [1956] for details): One may presuppose that if a decision maker has a preference between
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outcomes or between exchanges of outcomes, then his corresponding utility differences should in a
sense be large enough that he can notice a preference. Mathematically, for example in the situation
from above with the relation

R2 := ∅

the parameter δ would then allow to continuously switch between an implicitly ordinal versus an
implicitly cardinal scale of measurement of the outcome space.

Finally, in our contribution we do not only introduce the above concepts for decision making, but
we also concretely propose linear programming formulations to compute the most of the decision
criteria. The basic idea is here to model the utility function by introducing a decision variable for
every utility value that the utility function actually takes. The incorporation of the imprecision in
the uncertainty model M is done as usual by formulating one decision problem for every extreme
point of the imprecise uncertainty model.

In the last section of the contribution we also apply our algorithms to a small synthetic example.

Contribution 5

Christoph Jansen, Hannah Blocher, Thomas Augustin, and Georg Schollmeyer. Information
efficient learning of complexly structured preferences: Elicitation procedures and their
application to decision making under uncertainty. International Journal of Approximate
Reasoning, 144:69–91, 2022.

Original Abstract

In this paper we propose efficient methods for elicitation of complexly structured preferences
and utilize these in problems of decision making under (severe) uncertainty. Based on the
general framework introduced in Jansen et al. [2018b], we now design elicitation procedures
and algorithms that enable decision makers to reveal their underlying preference system (i.e.
two relations, one encoding the ordinal, the other the cardinal part of the preferences) while
having to answer as few as possible simple ranking questions. Here, two different approaches
are followed. The first approach directly utilizes the collected ranking data for obtaining the
ordinal part of the preferences, while their cardinal part is constructed implicitly by measuring
the decision maker’s consideration times. In contrast, the second approach explicitly elicits
also the cardinal part of the decision maker’s preference system, however, only an approximate
version of it. This approximation is obtained by additionally collecting labels of preference
strength during the elicitation procedure. For both approaches, we give conditions under
which they produce the decision maker’s true preference system and investigate how their
efficiency can be improved. For the latter purpose, besides data-free approaches, we also
discuss ways for statistically guiding the elicitation procedure if data from elicitations of
previous decision makers is available. Finally, we demonstrate how the proposed elicitation
methods can be utilized in problems of decision under (severe) uncertainty. Precisely, we
show that under certain conditions optimal decisions can be found without fully specifying
the preference system.

As described above, the relations R1 and R2 of a preference system give a very flexible way to spec-
ify the preferences of a decision maker. But how would one concretely elicitate these preferences?
In particular, if the outcome space has n elements, then for the elicitation of R1 one would have
to ask the decision maker for n(n− 1)/2 pair comparisons if one would do this straight-forwardly.
Moreover, for R2 it would be n2(n2 − 1)/2 pair comparisons. This is of course usually too much.
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Therefore, in this contribution we propose information efficient elicitation procedures that try to
make a decision under the demand to ask as few pair comparisons as possible. In the contribution
we propose two elicitation procedures called time elicitation and label elicitation. We now shortly
sketch these two methods.

Procedure 1: time elicitation The first procedure for eliciting the preference system of a de-
cision maker uses data about consideration times that is obtained during the elicitation process
of R1. The idea behind this is the assumption that the strength of the preference between two
consequences decreases in the time that ranking the two consequences takes. For a pair of alterna-
tives (ai, aj) ∈ PR1

, besides the ranking, we also measure the consideration time tij the decision
maker needs for ranking the two consequences. This way of using additional data is inspired by
the paradata-approach from survey methodology (e.g., Kreuter [2013]) that uses the fact that
individual data about the surveying process itself can contain valuable information about respon-
dents and their dispositions. The collected consideration times are then utilized for constructing
the relation R2 being a candidate for the true relation (denoted R∗

2 in the sequel, analogously, the
true ordinal part is denoted by R∗

1). All in all, this constructs a preference system while asking
only questions on the decision maker’s ordinal preferences R∗

1. The concrete procedure of time
elicitation can be described as follows:

We assume a finite outcome space A = {a1, . . . , an}. Then, we start with three initial relations
R1 = {(a, a) | a ∈ A} and R2 = ∅ and C = ∅. The relation C models the set of incomparable
pairs. Then, the decision maker is iteratively asked about the preferences between certain pairs
{ai, aj} from the set A{2} := {{a, b} : a, b ∈ A, a ̸= b}. Note that instead of asking about all
elements in A{2} one could alternatively also ask only for a subset B ⊆ A{2}. Of course one can
then expect to get only a subsystem (i.e., R1 ⊆ R∗

1 and R2 ⊆ R∗
2) of the true preference system of

the decision maker. In every step of the elicitation there are four possible cases:

i) The decision maker judges ai and aj as incomparable. In this case R1 and R2 remain un-
changed, but the pairs (ai, aj) and (aj , ai) are added to C . The times tij and tji are set to
zero.

ii) The decision maker prefers ai to aj . Then we add the pair (ai, aj) to R1 and measure the
time tij > 0 and the time tji is set to zero.

iii) The decision maker prefers aj to ai. In this case we add (aj , ai) to R1 and measure the time
tji > 0. The time tij is set to zero.

iv) The decision maker judges ai and aj as equivalent
16. We then add the pairs (ai, aj) and (aj , ai)

to R1. The times tij and tji are set to some c∞ ∈ R with c∞ > max{tpq | (ap, aq) ∈ PR1}.

The above procedure will produce a relation R1 that is a subrelation of R∗
1 and that in this sense

approximates R∗
1. Regarding R2, we proceed as follows:

First, set tii := c∞ for i = 1, . . . , n. Then, for constructing R2 we use the consideration times:
We successively take pairs of pairs (ai, aj) and (ak, al) ∈ R1 and define R2 by ((ai, aj), (ak, al)) ∈
R2 : ⇐⇒ tkl ≥ tij > 0, i.e., if the decision between ak and al took at least as long as the decision
between ai and aj . All-together, this procedure produces a preference system A = (A,R1, R2)
on A. If all elements in A{2} were asked, then under the following assumption A1, the obtained
preference system coincides with the true preference system of the decision maker. (If only a
subset is asked, then only a subsystem is obtained.)

Assumption A1 For (ai, aj), (ak, al) ∈ R∗
1 it holds

i) tkl > tij > 0 ⇐⇒ ((ai, aj), (ak, al)) ∈ PR∗
2
.

16Two consequences are called equivalent if (a, b) ∈ R∗
1 & (b, a) ∈ R∗

1 The set of all equivalent pairs is denoted
with IR∗

1
.
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ii) tkl = tij > 0 ⇐⇒ ((ai, aj), (ak, al)) ∈ IR∗
2
.

iii) The maximal consideration time c∞ is attained exactly for equivalent consequences, i.e. tij =
tji = c∞ ⇐⇒ (ai, aj) ∈ IR∗

1
.

Now the efficiency of time elicitation can be remarkably improved if we assume a decision maker
with a transitive relation R∗

1 that satisfies assumption A1 and the following two additional as-
sumptions:

Assumption A2 For (ai, aj), (aj , ak) ∈ PR∗
1
we have 1/tij + 1/tjk = 1/tik, if (ai, ak) ∈ PR∗

1
.

Assumption A3 For (ai, aj) ∈ IR∗
1
we have tki = tkj whenever (ak, ai), (ak, aj) ∈ PR∗

1
and

tik = tjk whenever (ai, ak), (aj , ak) ∈ PR∗
1
.

These additional assumptions guarantee that the consideration times are aligned to the relation
R∗

2. Now, suppose time elicitation has produced the relations Rk
1 and Ck after k pairs have been

presented. Transitivity of R∗
1 then allows to deduce all preferences for pairs in Hk\ Rk

1 where Hk

is the transitive hull of Rk
1 . The pair to present in step k+1 can then be selected from the (usually

remarkably) smaller set A2\{{a, b} | (a, b) ∈ Hk or (b, a) ∈ Hk or (a, b) ∈ Ck}. The pairs in the
set {{a, b} | (a, b) ∈ Hk or (b, a) ∈ Hk or (a, b) ∈ Ck} and the corresponding consideration times
can then be autmatically determined according to transitivity and assumption A2. Of course, the
assumption A2 is a very strong assumption. An alternative way of elicitation is label elicitation.

Procedure 2: label elicitation

This elicitation produces an approximation of R∗
1 by asking only questions about R∗

1. In contrast
to time elicitation, this construction does not rely on the use of paradata. Instead it explicitly
elicitates labels of preference strength. These labels are intended to provide ordinal information
about preference strength. The idea is as follows: To every presented pair of consequences, the
decision maker assigns a label from some previously fixed set of labels that are interpreted only
on an ordinal scale of measurement, plus the possibility of labels that represent incomparability
and indifference. In case two presented pairs are comparable, the assigned labels will be ordered
and we add the corresponding pair of pairs to the relation approximating R∗

2 whenever the first
pair receives a strictly greater label than the latter (or both receive label 0). With this, label
elicitation can be described in more detail as follows:

Again, we have a finite set A = {a1, ..., ak} of outcomes. We start with two empty relations R1 = ∅
and R2 = ∅. We then successively ask about the preferences between some (not necessarily all)
pairs (ai, aj) ∈ A×A, where the decision maker assigns a label from the set Lr := {n, c, 0, 1, ..., r}
to every such pair. This labeling process can be described by a labeling function lr : A×A → Lr.
The labels from Lr have the following interpretation: The higher the label from Lr\{0, n, c} as-
signed to a pair (ai, aj) ∈ A×A is, the stronger is the decision maker’s strict preference of ai over
aj . If the label n is assigned to (ai, aj), this means that ai and aj are incomparable, whereas the
label 0 is interpreted as indifference between ai and aj . If label c is assigned to (ai, aj), this means
that ai is strictly preferred to aj , but no statement about intensity of preference is possible. For
simplicity, we write lijr instead of lr((ai, aj)) in the sequel. The collected labels are utilized to suc-
cessively build up a preference system: Whenever lijr ∈ Lr\{n, 0}, we add the pair (ai, aj) to R1 .
If lijr = 0, we add both pairs (ai, aj) and (aj , ai) to R1 , whereas if lijr = n the relation R1 remains
unchanged. This procedure leaves us with a (potentially non-complete) relation R1 approximat-
ing the ordinal part R∗

1 of the true preference system. Subsequently, we can utilize the labels of
preference intensity that we collected during the procedure for also constructing an approxima-
tion R2 for the cardinal part R∗

2 of the decision maker’s preferences. For that, we take pairs of
pairs (ai, aj), (ak, al) ∈ R1 and add ((ai, aj), (ak, al)) to R2 if and only if lijr > lklr or if lijr = lklr = 0.
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This procedure produces a preference system. Again, under assumptions that guarantee an align-
ment of the decision makers preference system with the labels (concretely assumptions 4, 5 and
6 in the contribution), this preference system is a subsystem of the true preference system of the
decision maker (cf., proposition 4 of the contribution). Moreover, if all elements of A{2} were
asked and if the label function is fine-grained enough (i.e., r is large enough), the true preference
system is obtained by label elicitation.

At the end of Section 4.3 of the contribution we also discuss a further way to make label elicitation
more efficient: The idea is to choose the number r of labels dynamically. Starting with an initially
chosen r we start a first elicitation round. Then we make a further elicitation round with a larger
r but only for pairs where we have some incomparabilities that are only due to identical labels.

Additionally, the contribution also discusses statistical ways for making the elicitation procedures
more efficient (cf., Example 2 of the contribution). The idea here is that in certain situations it is
possible to get some information about previous decision processes made by former decision mak-
ers. If it is reasonable to assume that these decision makers are very similar to the decision maker
who is actually elicitated, then one can use their preferences to statistically guide which question
to ask next in the elicitation process. Here, in principle one could use any predictive model that
can handle the preferences of the former decision makers as an input. Then, for every possible
pair comparison to ask next, one could make a probabilistic prediction about which preference (or
indifference or incomparability) has which probability. Based on all predicted probabilities one
can decide, which pair comparison should be asked next. How exactly to decide this based on
the probabilities is not obvious. In principle, there are two possibilities: If one knows the exact
decision criteria, then one maybe can incorporate it into the exact rule for deciding about the next
pair comparison to ask. Alternatively, one can build a rule without incorporating the concretely
used decision criteria.

In the Contribution, we used the second approach and simply asked in every step of the elicitation
procedure that pair comparison for which a comparability is most probable. For the predictive
model we used the methodology of subgroup discovery (see Atzmueller [2015]) to make probabilistic
predictions. As a decision criterion, we used the A | M-dominance from Contribution 4. A a small
simulation study showed that this can in fact increase the efficiency of the elicitation.
For the simulation of preference systems we only used the relation R∗

1. For the random generation
of relations R∗

1, we used the Mallows model (see Mallows [1957]) adapted to partial orders. The
relation R∗

2 was not used for the simulation of the random preference systems and also not for the
prediction of new pairs. We simply set R∗

2 = ∅. We intent to also include the cardinal part R∗
2 of

the preference systems in future research, compare Section 5.3.

Contribution 6

Jean Baccelli, Georg Schollmeyer, and Christoph Jansen (2022): Risk aversion over finite
domains. Theory and Decision, 93:371–397.

Original Abstract

We investigate risk attitudes when the underlying domain of payoffs is finite and the payoffs
are, in general, not numerical. In such cases, the traditional notions of absolute risk attitudes,
that are designed for convex domains of numerical payoffs, are not applicable. We introduce
comparative notions of weak and strong risk attitudes that remain applicable. We examine
how they are characterized within the rank-dependent utility model, thus including expected
utility as a special case. In particular, we characterize strong comparative risk aversion under
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rank-dependent utility. This is our main result. From this and other findings, we draw two
novel conclusions. First, under expected utility, weak and strong comparative risk aversion
are characterized by the same condition over finite domains. By contrast, such is not the
case under non-expected utility. Second, under expected utility, weak (respectively: strong)
comparative risk aversion is characterized by the same condition when the utility functions
have finite range and when they have convex range (alternatively, when the payoffs are nu-
merical and their domain is finite or convex, respectively). By contrast, such is not the case
under non-expected utility. Thus, considering comparative risk aversion over finite domains
leads to a better understanding of the divide between expected and non-expected utility, more
generally, the structural properties of the main models of decision-making under risk.

This contribution establishes notions of risk aversion in a setting where the underlying scale of
measurement of the outcome space of envisaged lotteries is only of (total) ordinal scale of measure-
ment. The classical risk attitudes studied in economics usually start with lotteries (i.e., random
variables with a finite support) that map in an outcome space that is assumed to be of cardinal
scale of measurement. The notions of risk aversion, risk seeking, and risk neutrality are usually
based on the notion of an increase in risk. A prominent notion of an increase in risk is based on
the concept of a mean-preserving spread (Rothschild and Stiglitz [1970]): Informally speaking, a
random variable Y is a mean-preserving spread of X if Y and X have the same expectation and
Y is obtained from X by spreading out probability mass of X in the direction from the mean
to the tails. In this case one could intuitively say that Y is more risky, more variable or more
uncertain17 than X. If one now thinks about ordinal random variables, then the mean is not
well-suited in measurement theoretic terms, and the notion of a mean preserving spread has to be
replaced by another notion. One such notion is that of a median preserving spread (Allison and
Foster [2004], de la Vega [2018]): If Y is obtained from X by spreading out probability mass in the
direction from the median to the tails, then it appears natural to say that Y is more risky than
X. If one replaces the median by an r-quantile with r ∈ (0, 1), then one speaks about a quantile
preserving spreading or an r-spread (Mendelson [1987], Bommier et al. [2012]). Additionally, if Y
is an r-spread of for some r ∈ (0, 1) one may say simply that Y is a spread of X. Finally, if X is
degenerate, meaning that X is a constant random variable (and therefore without any variability)
one may say that Y is a basic spread of X. The notion of a spread can be easily characterized
with the cumulative distribution functions: Assuming continuous distribution functions for ease
of explication, for example Y is an r-spread of X if and only if the distribution functions single
cross at one point z where P (X ≤ z) = P (Y ≤ z) = r and below z the distribution function of
Y lies above that from X; and above z the distribution function of Y lies below the distribution
function of X, which formalizes that probability mass is spread out in the direction from z to the
tails. Then, one can define Y as more risky than X if Y is a spread or a r-spread (for some fixed
r) or a basic spread of X, respectively. With this one would get notions of more risky than of
different strengths. To formulate a notion of risk aversion of a decision maker, one could say for
example that a decision maker is risk averse, if she prefers X to Y whenever Y is a spread of X.
But this way to proceed would lead to more or less uninteresting concepts, because these concepts
would clash with core properties of decision making under risk: For instance, assuming mixture-
continuity18 - a standard property satisfied by e.g., rank dependent utility and many other models
of decision theory - one can show that a decision maker who is risk averse to all spreads necessarily
violates strict respect of first order stochastic dominance. Similar conclusions hold for the other
kinds of spread. Therefore, in the contribution, we analyze a relative notion of comparative risk
aversion: We say that a decision maker A is strongly more risk averse than a decision maker B if
every spread that B accepts is also accepted by A. If we demand this only for basic spreads then

17In Rothschild and Stiglitz [1970] these three terms are used synonymously.
18A decision maker satisfies mixture continuity if for any three lotteries p, q, r the sets S = {α ∈ [0, 1] |

q is weakly preferred to αp + (1 − α)r} and T = {α ∈ [0, 1] | αp + (1 − α)r is weakly preferred to q} are closed
in [0, 1]. Here, for example αp+ (1− α)r denotes the mixture lottery where one plays lottery p with probability α
and the lottery r with probability (1− α).
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we speak about weak risk aversion.

The main result of our contribution is the characterization of strong comparative risk aversion
under the model of rank dependent utility (RDU, Quiggin [1982]). Therefore, let us shortly intro-
duce RDU:

Let A = {a1, . . . , an} be a finite set of outcomes. Assume that all considered decision makers
are ordinally equivalent, which means that they all prefer a1 over a2 over ... over an. Let L
be the set of all probability distributions, or lotteries, over A. Then, RDU holds if there exists a
strictly increasing, continuous probability weighting function w : [0, 1] −→ [0, 1] with w(0) = 0 and
w(1) = 1, and a strictly increasing utility function u : X −→ R, such that (defining by convention
u(an+1) = 0) the preference of the decision maker can be represented with the function v : L −→ R
given by

v(l) =

n∑
i=1

w
 i∑

j=1

pj

 (u(ai)− u(ai+1))


via lottery l is preferred to lottery l′ if and only if v(l) > v(l′). Here pj denotes the probabilities
that lottery l has outcome aj .

The characterization of comparative risk aversion is now done by analyzing the probability weight-
ing functions and the utility functions of two decision makers, which we denote with w1 and w2

and u1 and u2 in the sequel. The basic insight in the characterization is the study of the degree
of non-convexity of w1 as a function of w2 (i.e., of the function w1 ◦ w−1

2 ) and the degree of non-
concavity of u1 as a function of u2 (i.e., of the function u1 ◦ u−1

2 , restricted to the range of u2).
For this, we introduce an index I1,2w and an index I1,2u as

I1,2w = inf


w1(p)−w1(q)
w2(p)−w2(q)

w1(r)−w1(s)
w2(r)−w2(q)

∣∣∣∣∣∣ p, q, r, s ∈ [0, 1], p > q ≥ r > s


I1,2u = sup


u1(a)−u1(b)
u2(a)−w2(b)

u1(c)−u1(d)
u2(c)−u2(d)

∣∣∣∣∣∣ a, b, c, d ∈ A, a ≻ b ⪰ c ≻ d

 .

Here, the symbols ≻ and ⪰ denote the strict and weak preferences between the outcomes that
both decision makers commonly have. The higher these indexes are, the less convex (concave,
respectively) is w1 as a function of w2 (u1 as a function of u2, respectively). More concretely, one
can show that

i) u1 is more concave than u2 (i.e., u1 ◦ u2 is concave) if and only if I1,2u ≤ 1.

ii) w1 is more convex than w2 (i.e., w1 ◦ w−1
2 is convex) if and only if I1,2w = 1.

The asymmetry between i) and ii) stems from the fact that the weighting functions are assumed
to be continuous. This implies that I1,2w ≤ 1 always holds. In contrast, the utility functions are
not necessarily continuous, which is of special importance in our contribution because we assume
that the outcome space and therefore the ranges of the utility functions are finite and particularly
not intervals. With this, we can state the following

Theorem For two (ordinally equivalent) RDU decision maker with weighting functions w1, w2

and utility functions u1, u2, decision maker 1 is strongly more risk averse than decision maker 2 if
and only if

I1,2w ≥ I1,2u .
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Intuitively speaking one can interpret this result in the following sense. The risk aversion of
decision maker 2 in comparison to decision maker 1 that may be due to a certain degree of non-
concavity of the utility function u1 as a function of u2 is compensated by a larger amount of
convexity of the probability weighting function of decision maker 2 compared to decision maker 1.

There are two special cases, for which this theorem has immediate corollaries. Firstly the case of
classical expected utility (EU). This is simply the case where the weighting function is the identity
map on [0, 1]. The other special case is the case of dual expected utility (DEU,Yaari [1987]) that
is obtained if A is a subset of the reals and the utility function is the identity map on A.

Corollary 1 For two EU decision makers it holds that decision maker 1 is strongly more risk
averse than decision maker 2 if and only if u1 is more concave than u2.

Corollary 2 For two DEU decision makers it holds that decision maker 1 is strongly more risk
averse than decision maker 2 if and only if w1 is more convex than w2.

The corollaries from above are already known for the convex case. With the convex case we mean
here that either the ranges of the utility functions are convex subsets of R or that the outcome
space A is a convex subset of R. For the case of a finite range of the utility functions, as far as
our knowledge goes the corollaries, and Theorem 1 are new. Importantly from the point of view
of proving things, some techniques like playing with a certainty equivalent are not available in the
finite ranged case.

Finally, concerning weak risk aversion, we were not able to give a concise characterization (but
see p.383ff of our contribution for some further partial characterizations). The characterization
of weak risk aversion under RDU is an open question even in the convex case. Even under the
assumption that the utility functions have convex range, giving a characterization would require
characterizing under RDU the absolute concept of weak risk aversion (i.e., aversion to mean-
preserving spreads with the added condition that the less risky lottery is degenerate). But this is
a longstanding open problem of the field (see Chateauneuf and Cohen [1994], Chateauneuf et al.
[1997]).

5.3 Related Work & Future Research

In the meanwhile, the concept of preference systems was already successfully applied in the context
of machine learning in Jansen et al. [2023a] as well as in the context of statistics in Jansen et al.
[2023b].

First, in Jansen et al. [2023a] we studied the performance of different classification algorithms over
a sample of data sets. We looked at different performance measures and introduced an appropriate
preference system for comparing different observed performance vectors. Concretely, we looked
at three classical performance measures (accuracy, area under the curve and Brier score) under
a partial cardinal scale of measurement: We specified that one performance vector is better than
(or equal to) another performance vector if and only if it is better (or equal) in every dimension.
Additionally, we say that an exchange (p, q) is better than (or equal to) an exchange (p̃, q̃) if p is
better than (or equal to) q and p̃ is better than (or equal to) q̃ and the difference p− q is in every
dimension better than (or equal to) the difference p̃− q̃.

Second, in Jansen et al. [2023b] we use preference systems to operationalize a multivariate no-
tion of poverty/inequality: While dimensions like income can be treated as of a cardinal scale of
measurement, dimensions like education or health are only of an ordinal scale of measurement.
All these aspects can be handled by introducing a preference system where, compared to a purely
ordinal analysis, beyond the relation R1 also the relation R2 is non-trivial. (Of course, one could
also argue for a non-cardinal scale of measurement for dimensions like income: For a purely ordinal
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assessment one would fall back to a purely multidimensional ordinal analysis, while if one only
assumes decreasing returns to scale, the relation R2 would still be non-trivial). Additionally to
the need of preference systems, in both papers also the fact, that one does only have a sample
of the involved random variables, has to be taken into account. We deal with this by doing a
permutation based statistical test based on the basic conceptualisation given in Schollmeyer et al.
[2017]. The obtained test has some potential to be a good alternative to other tests like the tests
discussed in Demšar [2006].

Concerning the elicitation of preference systems we intend to develop more specialized elicitation
techniques that make still more use of data from previous elicitation processes: In Jansen et al.
[2022], for the prediction of the pair comparison to ask in the next step in the elicitation proce-
dure, we used the methodology of subgroup discovery. Concretely, in every step we constrained
the training set to that partial orderings that are in accordance with all already elicited pairs of the
decision maker that is actually elicitated. Therefore, in every step of the procedure the training
data is getting smaller. At the same time the covariates for the prediction of new pairs are getting
less complex. A thorough analysis of how this effects a possible over- or underfitting of the pre-
diction procedure would be of high interest here. Fortunately, for the case of subgroup discovery,
for example an explicit analysis of the Vapnik-Chervonenkis dimension of the covariate space is
possible, cf., Schollmeyer et al. [2017]. We intend to explicitly incorporate such an analysis in an
appropriate dynamical regularization scheme (for which there are also already concrete proposals
available, see Schollmeyer et al. [2017], Schollmeyer [2023]) for a more efficient prediction of the
next pair to elicitate.

Additionally, also for the simulation study based analysis of the elicitation procedure we intend to
use more elaborate statistical models for preference systems. Concretely, we intent to replace the
distance based Mallows model for partially ordered data used in Jansen et al. [2022] (cf., Exam-
ple 2, p. 87) by the data depth based model from Blocher et al. [2022]. Actually, one motivation
for developing the ideas within Blocher et al. [2022] was a demand for more non-parametric and
therefore more flexible statistical models for partial orders to be able to simulate realistic scenarios
for a random version of Relation R1. Needless to say that also concerning the relation R2 there is
still the same demand: How can one develop reasonable statistical models for the cardinal part of
a random preference system? For the answer one only needs to take Birkhoff seriously: Since R2

is simply a preorder on R1 we have a hierarchy over a hierarchy and thus again plain and simply a
hierarchy. Therefore, again the whole toolbox of formal concept analysis together with all already
developed methodology for data depth in the context of formal concept analysis can be applied!
At least in a conceptual sense. Computational issues of course will become still more cumbersome
by moving from R1 to R2.

Finally, not only for the simulation of preference system, but also for statistically guiding the
elicitation procedure with the methodology of subgroup discovery - a methodology that can be
very naturally framed in the language of formal concept analysis (cf., e.g., Boley and Grosskreutz
[2009]) - we have a FCA method at hand that can be used also for incorporating the relation R2.

Concerning Contribution 6 and a notion of one random variable Y being more variable or more
dispersed than another random variable X is also of interest for random variables taking values
in very abstract spaces. Think of random variables taking values in an object set G within an
abstract setting of formal concept analysis. In the setting of Contribution 6 the random variables
were of ordinal scale of measurement. The notion of a median preserving spread relied on the
notion of the median and the notion of being below or above the median, respectively. In more
abstract spaces the notion of a median can be captured with the help of data depth as a point with
maximal depth. But one generally does not have a notion of below or above. However, it is still
possible to define a reasonable notion of one random variable Y being more dispersed than another
random variable X in the abstract setting of formal concept analysis by using the methodology of
data depth:
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A very intuitive notion of a partial order of one random variable Y being more dispersed than
another random variable X, which we will denote with ≤DISP , could be defined using upper
levels sets/contour sets 19 of depth functions as follows: For a given proportion α ∈ [0, 1] define
Cα,X as that set A of the deepest data points of the underlying space w.r.t. an underlying depth
function D and the underlying law X such that P (X ∈ A) = α. Let furthermore denote Cα,Y

denote the analogous set for law Y . Then, define Y as more dispersed than X if for all α ∈ [0, 1]
we have

Cα,X ⊆ Cα,Y .

(Here, one would have to treat different objects with the same attributes as identical.) For the sim-
ple case of (continuous) random variables in R1 the usually used depth functions collapse to depth
functions that are isotone transformations of the function D(z,X) := min{FX(z), 1 − FX(z)},
where FX is the cdf of the underlying image law PX . For that depth functions, it is easy to
show that Y is more dispersed than X if and only if Y is a median preserving spread of X. In
this sense, we really have a generalization of a median preserving spread. This generalization
could be used not only in cases where we have a clear ordering, like in classical income inequality
analysis. In fact, we have a methodology for the inequality analysis for non-ordinal data (where
inequality is meant here in the sense of inequality/variance within a population/random variable).
One interesting example would be social choice theory data, i.e., data that are (possibly partial)
rankings, which are clearly of a non-ordinal scale of measurement in the sense that there is no
clear a priori below and above. Interestingly, the abstract structural properties of depth functions
discussed in Contribution 2 would have a big influence on which aspects of dispersion are cap-
tured by the above depth-based dispersion order: A quasiconcave depth function is unimodal and
can therefore not distinguish between dispersion that is due to polarization20 and dispersion that
is due to unimodal variability. In contrast, a depth function that is not quasiconcave/unimodal
could possibly distinguish more between unimodal dispersion and polarization in the sense of only
capturing unimodal dispersion.

One technical aspect is that the relation ≤DISP may be very weak because a necessary condition
for comparability is that the median of both Y and X is the same. One way out of this would be
to look not at all α ∈ [0, 1] within the definition of ≤DISP , but instead to restrict α to be larger
than a threshold c. Another way to get a stronger ordering relation could be established if one has
some kind of translation operation in the sense of a translation group T. Then one could define
Y be more dispersed than X if there exists a translation T ∈ T such that

Cα,T◦X ⊆ Cα,Y .

However, it seems to be seldom the case that in very abstract settings one is equipped with
an additional translation group. To give one concrete example where we in fact have a natu-
ral translation group is the case of social choice theory. There, the data are (possibly partial)
orders on a set of items {I1, . . . , Ik}. Then, a natural translation group would be T := {Tσ |
σ permutation on {1, . . . , k}} where Tσ is given by Tσ(p) = {(Iσ(i), Iσ(j)) | (Ii, Ij) ∈ p}}. This
translation group would then lead to a dispersion order that does only care for the dispersion of
the distribution of the posets per se, but not for ’the names of the items’.

19An upper level set or contour set with level λ is defined as the set of all objects that have dept λ or larger.
20Polarization means that data points are clustered into two or more ’opposite’ subgroups. A clear cut rigorous

disambiguation between polarization and dispersion in the context of social choice theory is, as far as the author
is aware, not yet established. For a more elaborate disambiguation between polarization and dispersion/inequality
in the context of poverty measurement, see, e.g., Esteban and Ray [1994], Duclos et al. [2004].
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6 C: Analysis of Deficient Data

“...a large part of...statistics is about what you would do if you had a model; and all of us spend
enormous amounts of energy finding out what would happen if the data kept pouring in. I wish
we could learn to look at the data more directly, without the fictional models and priors. On the
same wish-list: we stop pretending to fix bad designs and inadequate measurements by modeling”
[Freedman, 1997, p.24]

6.1 Introduction

The aim of the contributions in this part is to add some methodology to the analysis of deficient
data, but not in the spirit of statistical modeling, instead in a more direct way where one tries to
stay as close to the data as possible instead of imposing further assumptions that would help in
making a classical statistical analysis possible at all. As an illustrative example, take Frischs true
regression (cf., Tamer [2010], Reiersöl [1945]): Assume two random variables X and Y that are in a
linear relationship, i.e. Y = β0+β1X+ε, but that both cannot be observed without measurement
error. Instead one only observes X∗ and Y ∗ that are noisy versions of X and Y , respectively. Then
the corresponding linear model is not identified and therefore cannot be consistently estimated.
In fact every slope parameter between the one obtained by regressing Y ∗ on X∗ and the inverse
of the slope parameter obtained by regressing X∗ on Y ∗ would be a reasonable candidate for an
estimate of the slope. Instead of imposing additional assumptions that would identify the model,
the methodology used here is in the spirit of partial identification and simply lives with an interval
or a set of estimates. Of course, the methodology of partial identification usually still comes
along with some assumptions, concretely in Contribution 7 the linearity assumption is of crucial
importance. In this sense we are still very far away from Freedmans wish-list.

6.2 Contributions

Contribution 7

Georg Schollmeyer (2021): Computing simple bounds for regression estimates for linear
regression with interval-valued covariates. In Jasper de Bock, Andrés Cano, Enrique Mirand,
and Serafin Moral, editors, Proceedings of the Twelfth International Symposium on Imprecise
Probabilities: Theories and Applications, Proceedings of Machine Learning Research,
147:273-279.

Original Abstract

In this paper, we deal with linear regression where the covariates are interval-valued and the
dependent variable is precise. Opposed to the case where the dependent variable is interval-
valued and the covariates are precise, it is far more difficult to compute the set of all ordinary
least squares (OLS) estimates as the precise values of the covariates vary over all possible
values, compatible with the given intervals of the covariates. Though the exact solution is
difficult to obtain, there are still some simple possibilities to compute bounds for the regression
parameters. In this paper we deal with simple linear regression and present three different
approaches: The first one uses a simple interval-arithmetic consideration for the equation for
the slope parameter. The second approach uses reverse regression to swap the roles of the
dependent and the independent variable to make the computation analytically solvable. The
obtained solution for the reverse regression then gives an analytical upper bound for the slope
parameter of the original regression. The third approach does not directly give bounds for
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the OLS estimator. Instead, before the actual interval analysis, in a first step, we modify
the OLS estimator to another linear estimator which is simply a reasonably weighted convex
combination of a number of unbiased estimators, which are themselves based on only two
data points of the data set, respectively. It turns out that for the degenerate case of a precise
independent variable, this estimator coincides with the OLS estimator. Additionally, the third
method does also work if both the independent variable, as well as the dependent variable
are interval-valued. Also the case of more than one covariate is manageable. A further nice
point is that because of the analytical accessibility of the third estimator, also confidence
intervals for the bounds can be established. To compare all three approaches, we conduct a
short simulation study.

This contribution deals with the case of a (simple) linear regression of the form Y = Xβ+ε in the
case that Y is precisely observed, but X can only be observed in intervals [X,X] and we only know
P (X ∈ [X,X]) = 1. One way of analysis that is often done, especially in the field of imprecise
probabilities or partial identification, is the computation of the so-called cautious data completion
(cf., Augustin et al. [2014]). The cautious data completion is obtained by varying virtual possible
precise data X over the whole range within the observed bounds [X,X], computing all parameter-
estimates that would be obtained by applying a classical estimator on this virtual precise data, and
then collecting all resulting estimates in a set. For the case of linear regression, precisely observed
covariates X and imprecisely observed outcomes Y , this was done for example in Schollmeyer and
Augustin [2015], cf., also Černỳ and Rada [2011], Beresteanu et al. [2011]. There, the obtained
set-valued estimator was called collection region. In these papers, as a classical estimator the
ordinary least sqaures (OLS) estimator was used. Because for fixed X this estimator is linear in
the outcome Y , it is relatively simple to compute the resulting set. The resulting set of estimates
is then mathematically a zonotope, i.e., a Minkowski sum of line segments, see Černỳ and Rada
[2011].

Opposed to the simple situation of a precise X, the case of an interval-valued covariate [X,X] ,
the situation is far more difficult. In particular there could be precise covariates compatible with
the observed bounds, for which the corresponding design matrix is singular. Thus the definition
of the cautious data completion is not even well-defined. Therefore, we go a different way, within
this contribution. The idea for an interval-valued estimator of the slope parameter given in the
contribution is very simple: For the precise case, given a sample (x1, . . . , xn) and (y1, . . . , yn), in
principle already a pair (xi, yi); (xj , yj) with i ̸= j identifies the slope parameter and a simple

(but not very effective) estimator for the slope parameter is given by β̂ :=
yj−yi

xj−xi
. Given this,

one can construct for all pairs (i, j) a corresponding slope estimate. Then one can aggregate all
these slope estimates, for example by a weighted mean. This - given the usual assumptions - will
lead to an unbiased estimator of the true slope. To make the estimator efficient, one can analyse
its variance and then one can choose the weights within the weighted mean in such a way that
the variance is minimal. In fact, by doing so one gets exactly the least squares estimator, see
Theorem 1 of the contribution. This insight is not new, see Olkin and Yitzhaki [1992]. However,
as far as the knowledge of the author goes, it was never used in connection with interval-valued
covariates. For interval-valued covariates, one can analytically compute upper and lower bounds
for the estimate based on the pair (i, j). Then, one can compute a weighted sum of the upper
bounds and a weighted sum for the lower bounds (using the same weights) to get an estimator
that asymptotically covers the true unknown slope parameter. Of course, it can happen that for
certain pairs one obtains trivial bounds [−∞,+∞] because the intervals of the pair of covariates
overlap. In this case one has to exclude these pairs. If there are still pairs for which the covariates
do not overlap, then one still gets an unbiased estimate for (a superset of) the slope. (This is
due to the fact that one excludes pairs only based on the covariates, without ’seeing’ the response
and therefore the random error.) In a last step one has to choose the weights. In the precise case
the weights are mainly based on the differences |xi − xj |. Since these differences are not precisely
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known in the situation of interval-valued covariates, one cannot directly minimize the variance of
the estimator. But at least one can take for example the mid-points of the intervals and then
minimize the variance analogously to the precise case. Note that this will still lead to an unbiased
set-valued estimator that converges to a set that contains the true parameter. The problem of
minimizing the variance can be done by solving a quadratic programming problem, see Section 2.3
of the contribution.

Beyond the approach from above, in the contribution we also present two other approaches. One
applies interval-arithmetic to the classical OLS-forula (see Section 2.1 of the contribution, cf., also
Tretiak et al. [2023] for a similar approach). The other approach uses reverse regression, i.e., one
treats Y as the independent variable and X as the dependent variable. Then, because only the
dependent variable of the reverse regression is interval-valued, the cautious data completion for
the reverse regression can be simply calculated as indicated above. With this, one implicitly gets
an upper bound for the slope of the original regression from the lower bound of the slope of the
reverse regression via the Cauchy-Schawrz inequality as

|βyx| ≤
1

|βxy|
,

where βxy is the lower bound for the slope of the reverse regression and βyx denotes the slope of
the original regression.

In Section 2.5 of the contribution, we also shortly discuss inference (e.g., computing confidence
intervals). For this, one would need the dispersion σ2 of the error term, that is usually not known.
In the case of interval-valued covariates, it is generally very difficult to compute tight bounds for
the dispersion, cf., e.g., Ferson et al. [2002]. However, for example Hlad́ık and Černỳ [2017] supply
conservative bounds which can be used for conservative inference.

Finally, a short simulation study concludes the contribution. The general impression from the
results of this simulation study is that the approach that uses the weighted mean of the estimates
based on pairs is usually better than the other two approaches. For a small dispersion of the error
term the results for all three approaches are very similar.

Contribution 8

Georg Schollmeyer (2019): A short note on the equivalence of the ontic and the epistemic
view on data imprecision for the case of stochastic dominance for interval-valued data. In
Jasper de Bock, Cassio de Campos, Gert de Cooman, Erik Quaeghebeur, and Gregory
Wheeler, editors, Proceedings of the Eleventh International Symposium on Imprecise Prob-
abilities: Theories and Applications, Proceedings of Machine Learning Research, 103:330–337.

Original Abstract

In the context of the analysis of interval-valued or set-valued data it is often emphasized that
one has to carefully distinguish between an epistemic and an ontic understanding of set-valued
data. However, there are cases, for which an ontic and an epistemic view do still lead to exactly
the same results of the corresponding data analysis. The present paper is a short note on this
fact in the context of the analysis of stochastic dominance for interval-valued data.

In this contribution we are concerned with first order stochastic dominance for univariate data
under the additional aspect that these data cannot be observed directly, but only in intervals.
A classical example of such a situation is the question about income within a social survey that
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is interested in income inequality between some populations. It is very usual that respondents
within social surveys refuse to tell their income and that the probability of refusing to answer is not
independent from the true income. Therefore, some social surveys like, e.g., the German General
Social Survey try to decrease non-response by first asking an open question about income. Then,
if the respondent refuses to answer, a categorized question about the income (e.g., Is your income
between 400 and 500 € ) is asked additionally. The data obtained by such a procedure are highly
non-standard in the sense that the scale of measurement is highly non-standard. On the one hand,
looking at two observed intervals of income, say [a, b] and [c, d], if b < c then one could say that
the interval [a, b] is clearly located below the interval [c, d]. Therefore, at least a partially ordered
scale of measurement is given. On the other hand, we do also know something about the range
of the quotient (or the difference) of the true incomes. Therefore, we have also a partial interval
scale of measurement. These facts are seemingly also partly due to an epistemic understanding of
interval data in the sense of Couso and Dubois [2014]: In the epistemic viewpoint, we assume that
there is some true quantity, here concretely the income of a person that participated at a social
survey. Stated in one stylized sentence, the epistemic understanding of data imprecision can be
summarized as

Observing a set-valued data point that represents an imprecise observation of a precise, but not
directly observable data point of interest.

Opposed to this, there are other cases of interval-data that are more appropriately understood in
an ontic view in the sense of Couso and Dubois [2014] (compare also the discussion in Contribu-
tion 1), which could be summarized as

Observing a set-valued data point that is understood as a precise observation of something that is
set-valued by nature, but that is ’imprecise’ only in the sense that we do not observe Rd-valued
data, but set-valued data. The observed set is genuinely set-valued and there are no distinguished
elements in the observed set and there is actually no real imprecision at all.

In this view, the localization of the scale of measurement within, e.g., the scale hierarchy of Stevens
seems to be still more unclear21. To give an example: If we analyze the lifetimes of, say writers,
then we can see such kind of data as interval-data. One natural aspect of the underlying empirical
relational structure is the notion of one writer having clearly lived before another writer. For
example Franz Kafka (1883 - 1924) clearly lived before Martin Walser (1927 - 2023), and this
relational fact has, among other things, at least one clear meaning : Franz Kafka could have had
an influence on Martin Walser and his writing22. But Walser in fact could not have any influence
on Kafka. On the other hand, the (range of) quotients or differences between time points when
Kafka and Walser, respectively, were alive, seems to be more difficult to interpret or to equip with
meaning. In this sense, it may also be important from a measurement theoretic point of view to
differentiate between different situations, which seems to be also loosely related to the dichotomy
of epistemic vs. ontic data imprecision. These considerations put aside23 (and additionally appre-
ciating the need for differentiating between the epistemic and the ontic case in particular w.r.t.
the obtained concrete results of an analysis), our contribution presents a case were in fact the epis-
temic and the ontic view lead to the same results. Therefore, if one is confronted with epistemic
data imprecision, for analyzing first order stochastic dominance, the misuse of the ontic view - if
one is only interested in obtaining the concrete mathematical results - may be of some interest.

Concretely, in the contribution, we look at univariate random variables X and Y that can only be

21Admittedly, one may see the scale hierarchy of Stevens more as a stylized hierarchy than as a thoroughly worked
out rigorous and extensive conceptualization that is appropriate for every thinkable situation of data analysis.

22And most presumably, he did, Walser wrote a whole dissertation about Kafka, see Walser [1992].
23Note additionally that for first order stochastic dominance, which is analyzed in this contribution, only the

partial ordinal scale of measurement is used and therefore, a possible additional partial cardinal scale of measurement
would not add anything.

36



observed in intervals [X,X] and [Y , Y ], respectively. We are interested if X is (weakly) stochas-
tically smaller than Y , which means that

E(u ◦X) ≤ E(u ◦ Y )

for all increasing and bounded functions u : R −→ R (cf., also Contribution 4). This can be
characterized with the concept of upsets: Given a poset (V,≤) an upset is a set A ⊆ V that fulfills

∀x ∈ V ∀a ∈ A : x ≥ a =⇒ x ∈ A.

Then, assuming that all upsets are measurable, first order stochastic dominance can be character-
ized as

X is stochastically smaller than Y ⇐⇒ P (X ∈ A) ≤ P (Y ∈ A) for every upset A ⊆ V.

In the case that (V,≤) are the reals equipped with the usual ≤-relation of the reals, it is easy to
see that the upsets are the sets of the form [c,∞] or (c,∞]. Therefore, stochastic dominance can
be easily characterized by the cumulative distribution functions (cdf) as

X is stochastically smaller than Y ⇐⇒ the cdf of X lies always above the cdf of Y.

Under an epistemic view, concerning the cautious data completion (cf., Augustin et al. [2014]) it
is easy to see what the most extreme data completion (X∗, Y ∗) is w.r.t. stochastic dominance:
Simply take for X∗ the upper bound X of the observed interval and for Y ∗ the observed lower
bound Y . If then X is stochastically smaller than Y , we can conclude that also for every other data
completion (X∗, Y ∗) the (virtual) random variable X∗ is stochastically smaller than the (virtual)
random variable Y ∗. If, on the other hand, X is not stochastically smaller than Y , then there
exists a cautious data completion (X∗, Y ∗) (namely, X and Y ), for which X∗ is not stochastically
smaller than Y ∗.

This means that the computational effort of computing the cautious data completion is in fact
very low.

Concerning the ontic viewpoint, one would proceed as follows: As indicated before, say an observed
interval [a, b] is strictly below an interval [c, d], in signs: [a, b] < [c, d], if and only if b < c. Then
take the set V of all intervals in the reals, together with this strict relation <, add the diagonal
∆V := {(I, I) | I ∈ V } to get a partial order ≤. Then, with the above upset characterization
of first order stochastic dominance for random variables with values in a partially ordered set,
check for stochastic dominance. As showed in the contribution, both the epistemic and the ontic
approach will lead to the same result. Of course, checking dominance within the ontic approach
is computationally more difficult, because one does not have a simple characterization via the cu-
mulative distribution function. However, for checking stochastic dominance within drawn samples
of [X,X] and [Y , Y ] one can efficiently solve this problem by solving a classical linear program-
ming problem, see Schollmeyer et al. [2017]. Now, what could be an advantage of solving this
more complicated problem formulation compared to simply solving the problem in the epistemic
formulation? One possible main advantage of the ontic approach that was only shortly discussed
in the contribution is the following:

The ontic approach would boil down to computing a supremum type characteristic

D = sup
A, A upset

P (X ∈ A)− P (Y ∈ A),

where X and Y now denote the observed random intervals (equipped with the ordering described
above). If this supremum characteristic is (smaller than or equal to) zero, X would be stochasti-
cally smaller than Y . Now, an important point in statistics is that usually we do not have direct
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access to X and Y . Instead, we have only i.i.d. samples of X and Y and can only compute an
empirical analogue Dn of D by replacing the respective laws of X and Y by the corresponding
observed empirical laws. Now, the analysis of the statistical behaviour of Dn is of high importance.
Actually, the problem of the analysis of this statistic Dn is already solved to a large extent, namely
in terms of Vapnik-Chervonenkis (VC) theory (Vapnik and Chervonenkis [2015]). If the so-called
VC dimension of the class of events (here the class of all upsets) over which the supremum is
build has a finite VC dimension, then Dn converges almost surely to D. This would make Dn

a good candidate for a statistical test of stochastic dominance. (The statistic Dn is generally
not distribution-free, but a permutation test like proposed in Schollmeyer et al. [2017] could be
used). If the VC dimension is infinite, then convergence cannot be guaranteed. If it is finite but
very high, then one would expect that usually Dn is far away from D such that for a statistical
test of stochastic dominance, a high VC dimension would make the statistical problem very ill-
conditioned and thus a statistical test would become very insensitive. This suggests to regularize
the test statistic, for example by reducing the family of all upsets to a subfamily that is not too
complex/large. It turns out that for a partially ordered set (V,≤), the VC dimension of the family
of all upsets is simply the width of the partially ordered set24, and the width can be explicitly
computed, see Schollmeyer et al. [2017]. This also allows for a direct control of the VC dimension,
a concrete proposal can be found in Schollmeyer et al. [2017] (cf., also Schollmeyer [2023]).

Compared to the ontic view, within the epistemic view, it seems computational intractable to make
for every data completion a permutation test.25 Maybe still more interesting, particularly w.r.t.
the cautious data completion is the fact that one seemingly cannot directly handle the problem of
an ill-conditioned statistical setting. More seriously, one cannot even see that one possibly has a
problem of ill-conditioning: Within the cautious data completion, for every concrete completion,
one treats the precise data point as it would be the true data point. But actually it is only a
virtually envisaged data point. In this sense one takes this virtual data point too seriously: For
the case of univariate interval-data, for every data completion the VC dimension of the class of
all upsets is one and therefore the problem for every data completion is very well-posed (cf., the
Glivenko-Cantelli theorem and the Dvoretzky-Kiefer-Wolfowitz inequality). So no virtual data
completion can see the ill-conditioning of the whole problem. In this sense, the cautious data
completion walks on the crutch of dividing a problem, namely testing for stochastic dominance
(of course conceptually rightly in an epistemic understanding), into two steps of firstly thinking of
every possible precise data points that is compatible with the observed intervals and then treating
this possible data point as if it was the true data point. Or, to put it into Vapniks words:

“When solving a problem of interest, do not solve a more general problem as an intermediate step.
Try to get the answer that you really need but not a more general one.”[Vapnik, 2006, p.477]

All these considerations show that a presumable misuse of the ontic approach within situations
that are clearly of epistemic nature can be a really good idea.

6.3 Related Work & Future Research

For both contributions of part C, there are interesting possibilities to relate them to the method-
ology used in the other parts, in particular, the methodology of formal concept analysis and data
depth. Here we want to exemplary indicate two such possibilities. The linear regression under
interval-valued data could also be treated descriptively with methods of formal concept analy-
sis: First, to start, think of a classical linear regression without epistemic data imprecision. If

24The width of a partially ordered set is the maximal cardinality of a set of elements that are pairwise incompa-
rable.

25Maybe it is possible to analytically identify that data completion, for which e.g., the p-value would be the
highest, but this would be a matter of future research. Note additionally, that for the univariate case, every data
completion would be linearly ordered, so we are in the one-dimensional setting for every data completion. But
for this setting the corresponding test statistic would be distribution free under the assumption of continuos cdf’s.
Maybe, this could help here, because this means that one does not need to rely on a permutation test.
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a set of data points (x1, . . . , xn) and (y1, . . . , yn) would lie perfectly on a line with intercept β0

and slope β1, then one could describe this in terms of formal concept analysis: Take the vectors
(x1, y1), . . . , (xn, yn) as the objects of a formal context. As the attributes take statements of the
form “x = c” and “y = d” with c, d ∈ R arbitrary. Then, the fact that the points lie perfectly on
a line can be expressed by saying that all formal attribute implications of the form

“x = c” −→ “y = β0 + β1c”

are valid in the context. If the points are not perfectly on a line then some of the implications
are not valid in the context. In this case one can try to measure how strongly the implications
are not valid, for example by looking at the data point(s) that violate(s) a formal implication
and by taking the squared difference between y and β0 + β1x, where x and y are the values
of the corresponding data point(s) that violate(s) the implication. Then, for every implication
that is violated one has a measure of the strength of violation. One can now aggregate all these
measures of strength, for example by taking the average. If one then takes the regression line that
minimizes this aggregate of strengths of violations, one would end up with the classical ordinary
least squares (OLS) solution, but presented in the language of formal concept analysis. Within
the FCA presentation, the choice of the squared distances and the use of the average for the
aggregation appear very arbitrary, compared to the classical representation under the standard
OLS assumptions. In fact, within the viewpoint of classical statistics, with this representation we
will not improve anything under the standard assumptions and the standard criteria for a good
method (remember the Gauß-Markov theorem). However, when it comes to interval-valued data,
then the FCA-representation has something to add: If we have intervals [x, x] instead of precise
x, then we can modify our conceptual scaling of the context to an interordinal scaling and take
“x ≤ c”,“y ≤ d” as well as “x ≥ e”,“y ≥ f” with c, d, e, f ∈ R arbitrary as attributes (with x and
y being now intervals and [a, b] ≤ c ⇐⇒ b ≤ c etc.). Then one can again measure the strength of
violation of a formal implication. For example (assuming β1 > 0) for a violation of an implication

“x ≤ c” −→ “y ≤ β0 + β1c”

one can take a certain distance between the intervals y and β0 + β1x, for example, the Hausdorff
distance, where x and y are now the intervals of that data point(s) that violate(s) the implication.
(Note that compared to the precise case, here are still more possibilities, which all look a little bit
arbitrary in the first place. Analyzing this aspect would of course be an interesting point of future
research.) Now, after aggregating (where the same arbitrariness aspect from above applies) one
can again find that regression lines(s) that minimize this aggregate. Compared to the cautious
data completion, where one usually gets a set with more than one regression line, here one would
expect that often enough there is only one regression line that minimizes the aggregate. However,
in a descriptive sense this precise regression line somehow describes the data set. Additionally,
one can use the modified conceptual scaling also in the case of precise data. This seems to be an
interesting point to investigate. In particular, because one does not only look at the data points
in isolation, but also on whole intervals of data points together, the topological structure in x (i.e.,
how the different residuals are arranged and not only how they are distributed) seems to play a
role. Of course, again, because under the classical assumptions of linear regression, informally
speaking, the distribution of the residuals is a sufficient statistic, and the arrangement of the
residuals w.r.t. x does not carry further information, this aspect will presumably be only relevant
for clear enough deviations from the standard assumptions.

Concerning the epistemic-ontic dichotomy of Contribution 8 it is interesting to look at the ontic
understanding of partial order data hold in Contribution 1. Directly looking at the example of
students preferences between universities given in Dittrich et al. [1998] one makes the following
observation: Looking at the concretely collected data it appears that during the data collection
process, some interviewers simply forgot to ask some of the pair comparisons for some students.
This shows that, of course, also non-standard data with an ontic understanding can additionally
suffer from epistemic data imprecision. Therefore, also for such data it is of interest, to analyze,
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how one can handle e.g., missing or coarsened data. In the context of partial order data and the
generalized Tukeys depth, we have first results concerning the computation of the cautious data
completion, i.e., the set of all data depth functions that would be obtained by replacing all partly
missing data with all possible precise data (under an ontic understanding) that are compatible
with everything that is observed (cf., Schollmeyer et al. [2023]). Additionally, we also already have
a concrete proposal for an analysis under the coarsening at random assumption (CAR, see Heitjan
and Rubin [1991]) where the coarsening process can be ignored in a certain sense. In the concrete
example of the university rankings this assumptions seem to be not too unreasonable, because in
this setting this assumption would mean that the event that a pair comparison was forgotten to
ask does not depend on the concrete answer, a student would have given.
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7 Versicherung an Eides statt

Hiermit versichere ich an Eides Statt durch meine Unterschrift, dass ich bei der Anfertigung
der vorliegenden Habilitationsleistung keine weiteren als die hier angegebenen Hilfsmittel be-
nutzt habe, und dass kein wissenschaftliches Fehlverhalten im Sinne der Richtlinien der Ludwigs-
Maximilians-Universität Mn̈chen zur Selbstkontrolle in der Wissenschaft in der Fassung vom 16.
Mai 2002 (geändert durch Beschlüsse des Senats vom 22.6.2006, 11.2.2010, 30.9.2014) vorliegt.

Georg Schollmeyer
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Verständigungsprozess. E. Klett, 1974.

P. Walley and T. L. Fine. Towards a frequentist theory of upper and lower probability. The Annals
of Statistics, 10(3):741 – 761, 1982.

M. Walser. Beschreibung einer Form: Versuch über Franz Kafka. Suhrkamp Taschenbuch, 1992.

J. Wang and R. Serfling. Nonparametric multivariate kurtosis and tailweight measures. Journal
of Nonparametric Statistics, 17(4):441–456, 2005.

K. Weichselberger. The theory of interval-probability as a unifying concept for uncertainty. In-
ternational Journal of Approximate Reasoning, 24(2-3):149–170, 2000.

K. Weichselberger. Elementare Grundbegriffe einer allgemeineren Wahrscheinlichkeitsrechnung.
I: Intervallwahrscheinlichkeit als umfassendes Konzept. Physica, 2001.

K. Weichselberger. The logical concept of probability: foundation and interpretation. In
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