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Reminder: Formal concept analysis

I Formal context K = (G ,M, I ):
• G . . . objects,

• M . . . attributes,

• I ⊆ G ×M binary relation, gIm ⇐⇒ object g has attribute m.

I For A ⊆ G : A′ := {m ∈ M | ∀g ∈ A : gIm}
. . . = set of all attributes common to all objects in A.

I For B ∈ M : B ′ := {g ∈ G | ∀m ∈ B : gIm}
. . . = set of all objects that have all attributes in B.

I For A ⊆ G : A′′

. . . = set of all objects that have all attributes that are

common to all objects in A. In the sequel: γ :=′′.

The images of γ are called the closed sets (w.r.t. γ).

I For A,B ⊆ G the object-implication A −→ B is valid in a

formal context if all objects in B have all attributes that are

common to all objects in A. 1



[Ganter and Wille, 1996, p.18]
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A short story about meet-distributive formal contexts

Definition (meet-distributive formal context)

A formal context K = (G ,M, I ) is called meet-distributive if

one of the following equivalent conditions is fullfilled1:

i) Every extent A is generated by the set extr(A) of all its

extreme points.2

ii) (Anti-exchange property, c.f., [Edelman, 1980]): for every

extent A and every two objects g , h /∈ A with g ′ 6= h′ we have

g ∈ (A ∪ {h})′′ =⇒ h /∈ (A ∪ {g})′′.

1In the sequel, only property i) will be of importance.
2An object g ∈ A of a subset A ⊆ G is called an extreme point of A if

(A′′\{h | h′ = g ′})′′ ( A′′.
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Example

[Ganter and Wille, 1996, p.18]

I A = {Fischegel ,Brasse,Frosch}(= A′′)

I {Fischegel} −→ {Brasse} −→ {Frosch}
I extr(A) = {Fischegel} 4



Examples

I Points in Rd as objects, half-spaces in Rd as attributes with

gIm ⇐⇒ point g lies in half-space m.

I (inter-)ordinally scaled data without ties (possibly

multidimensional, with no ties in any dimension)

I Any context that is composed by meet-distributive

subcontexts.
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The classical convex hull peeling depth for data in Rd
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For comparison: Tukey’s depth (half-space depth) for data in

Rd

DTukey (x ,Pn) = inf{Pn(H) | H half-space, H 3 x}
= 1− sup{Pn(H) | H half-space, x /∈ H}

with Pn(H) = proportion of points in half-space H.
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For comparison: Tukey’s depth for data in Rd
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For comparison: Tukey’s depth in formal concept analysis

DTukey (x ,Pn) = 1− sup{Pn(A) | A formal extent, x /∈ A}

with Pn(A) = |A|
|G |
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Theorem (Properties of the extreme point operator)

Let K be a meet-distributive formal context and let

extr : 2G −→ 2G : A 7→ extr(A) be the corresponding extreme

point operator. Then, for all A ⊆ G we have:

i) Generativity: extr(A)′′ = A′′ (in other words: γ ◦ extr = γ).

ii) Intesiveness: extr(A) ⊆ A.

iii) Idempotence: extr(extr(A)) = extr(A).

Definition (peeling operator)

Let K be a formal context (not necessarily meet-distributive) and

let γ :=′′ be the corresponding closure operator. An operator

ν : 2G −→ 2G is called a peeling operator if it is generative,

intensive and idempotent. A peeling operator is called minimal

(w.r.t γ) if for all A ⊆ G and all B ( ν(A) we have

γ(B) ( γ(A). It is called contour-closed (w.r.t. γ) if for all

extents A the peeled set A′′\ν(A) is closed w.r.t. γ.
10



Remark

The extreme point operator is both minimal and contour-closed.

In the general, non-meet-distributive case it seems not possible to

construct a generative operator that is additionally both minimal

and contour-closed.
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Definition (depth function in FCA)

Let K = {K = (G ,M, I ) | K is a formal context } and let

D := {(A,K) | K = (G ,M, I ) formal context, A ⊆ M}. A depth

function D is a (partial) map

D(·, ·) : D −→ R≥0.

Definition (peeling depth)

Let K be a (finite) formal context and let ν be an arbitrary peeling

operator. Then we define the peeling depth (w.r.t. ν) recursively as

Dν(g ′,K) := 1 for all g ∈ ν(G )

Dν(g ′,K) := k + 1 for all g ∈ ν({g ∈ G | Dν(g ′,K) � k})

Note that this defines in fact only a partial mapping, but this can be

resolved (not important here.)
12
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Some useful notions of dimension

Definition

Let K be a formal context, γ the corresponding closure operator,

extr the corresponding extreme point operator and ν an arbitrary

peeling operator. Then we define:

i) the extreme point dimension as

dextr := sup{|extr(A)| | A ⊆ G};
ii) the peeling dimension as dν : sup{|ν(A)| | A ⊆ G};
iii) and the VC dimension as

VC (K) := sup{|A| | A ⊆ G , {A ∩ B | B extent of K} = 2A}.
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VC dimension in FCA

I A set A ⊆ G is called shatterable if

{A ∩ B | B formal extent } = 2A.

I The VC dimension is the largest cardinality of a shatterable

set.

I In FCA this corresponds to the maximal cardinality of an

implication-free set3

I Additionally, the VC dimension is the maximal cardinality of a

contranominal subcontext:

mj1
mj2

mj3
. . . mjk−1

mjk

gi1 © x x . . . x x

gi2 x © x . . . x x

gi3 x x © . . . x x

.

.

.

.

.

.

.

.

.

.

.

.
. . .

.

.

.

.

.

.

gik−1
x x x . . . © x

gik
x x x . . . x ©

3A set A ⊆ G is called implication-free if there is no implication C −→ D with

C ,D ⊆ A, D 6= ∅ and C ∩ D = ∅. 15



Theorem

Let K be a formal context without duplicates and let ν be a

peeling operator. Then we have:

i) dν ≥ dextr . (Reason: ν(A) ⊇ extr(A) for every A ⊆ G .)

ii) The shatterable sets are exactly the images of the operator

extr .

iii) Thus, dextr = VC (K).

iv) If ν is minimal, then we have dν = dextr = VC (K).

16



Three variants of a general peeling operator

Definition (peeling operators)

Define νclosed , νmin and νminclosed as mappings from 2G to 2G via

νclosed(A) := extr(A) ∪
(
A\extr(A)′′

)
νmin(A) :∈ min{B ⊆ A | B ′′ ⊇ A′′}

νminclosed(A) :∈ min{B ⊆ A | B ′′ ⊇ A′′ & A′′\B ∈ im(γ)}

17
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Remark

Note that νmin is a minimal peeling operator. In contrast, νclosed

and νminclosed are generally not minimal. Note further that νmin

and νminclosed are generally not unique. The min operator is

meant here w.r.t. ⊆. (Of course, using the min operator w.r.t.

cardinality of the sets would refine the choice to special sets that

are also minimal w.r.t. ⊆.)
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A notion of robustness without metrics: An unachievable goal?

Breakdown point (according to Donoho and Gasko [1992]):

ε(T ,X (n)) := min

{
m

n + m

∣∣∣∣ sup
Y (m)

||T (X (n) ∪ Y (m))− T (X (n))|| =∞
}

with T . . . a location estimator (e.g., median), X (n) . . . the

actually observed data set of size n, Y (m) . . . potential

contamination data set of size m.
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A notion of robustness without metrics: Yes indeed! i

Definition (Contamination pair)

Let K = (G ,M, I ) be a formal context. A pair (A,B) with

A,B ⊆ G is called a contamination pair (w.r.t. K), if for every

C ⊆ A and D ⊆ B the formal implication C −→ D is not valid in

K.

Remark

The set A can be seen as the support of the distribution of actual

interest and the set B plays the role of the support of the

contamination. Note further that (A,B) is a contamination pair

if and only if A −→ {b} is not valid for everey b ∈ B.
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Example: R1 with interordinal conceptual scaling

I G ⊆ R1

I M = {“≤ x”| x ∈ G} ∪ {“≥ x”| x ∈ G}.
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Conta m inati un pair
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Definition (Realized contamination breakdown point)

Let T be a mapping with domain K and codomain such that for

all (G ,M, I ) ∈ K we have T ((G ,M, I )) ⊆ G . (Think of

T ((G ,M, I )) = arg max
g∈G

D(g ′, (G ,M, I )) for a depth function D.)

Let furthermore K = (G ,M, I ) be a formal context. Then the

realized contamination breakdown point (RCBP) of T (w.r.t. K)

is defined as

ε(T ,K) := min {α | ∃(A,B) contamination pair w.r.t. K,

A ∪ B = G ,
|B|
|G |

= α :
|B ∩ T (K)|
|A ∩ T (K)|

≥ |B|
|A|

}
.
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Theorem (Realized contamination breakdown point of the

peeling-median)

Let K be a formal context (not necessarily meet-distributive) with

VC (K) < |G |. Let ν be a peeling operator and let

Tν(K) := arg max{Dν(·,K)} be the corresponding peeling-median.

Then if ν is minimal, the realized contamination breakdown point of

the peeling-median Tν is bounded from below by

ε(Tν ,K) ≥
⌊

1

VC (K)

⌋
G

, (1)

where VC (K) is the VC-dimension of the closure system of all extents

of the context K and where b·c is the rounding downwards to the next

multiple of 1/|G |. Furthermore, more concretely, if there is more than

one peeling, we have

ε(Tν ,K) ≥
⌊

number of peelings

|G |

⌋
G

. (2)
29



Remark

Inequality (2) also holds for a peeling operator ν that is not

minimal. Note further that the number of peelings is dependent

on the concrete peeling operator (and of course also on the

context K). In contrast, inequality (1) is only dependent on the

VC demension of K, and often, this dimension can be

controlled/analyzed a priori somehow.

Remark

The bound
⌊

1
VC(K)

⌋
G

for minimal ν is sharp in the sense that

there exists a subset A ⊆ G such that

ε(Tν ,K|A×M) ≤
⌊

1

VC (K)

⌋
A

(
=

⌊
1

VC (K|A×M)

⌋
A

)
.

Furthermore, for arbitrary A ⊆ G with |A| > VC (K) and for

arbitrary B ⊆ M we have ε(Tν ,K|A×B) ≥
⌊

1
VC(K)

⌋
A

.
30



Idea of proof

I Every peeling contains at most VC (K) data points.

I Every peeling contains at least one ’outlier’ (w.r.t. every

arbitrary thinkable contamination pair) as long as there are

outliers at all in the remaining set of data points.
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’Abstauber’: Breakdown point for other depth functions

Theorem

Let K be a formal context, let D be an arbitrary depth function

and let TD be its corresponding median.

i) If D is generative, then we have

ε(TD ,K) ≥
⌊

number of contours of D

|G |

⌋
. (3)

ii) If D is additionally minimal, then we have

ε(TD ,K) ≥
⌊

1

VC (K)

⌋
. (4)
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Remark

For example, Tukey’s depth is generative and under ’certain

additional assumptions’ also minimal.
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Example: Partial ranking data

Theorem

Let C = {c1, . . . , cq} be a set of q items. Let K = (G ,M, I ) be a

formal context where every object g ∈ G represents a partial

ranking of the q items (i.e., every g ∈ G is a reflexive, transitive

and antisymmetric binary relation on C ). Let further be

M = C × C and let gI (c , c̃) ⇐⇒ (c , c̃) ∈ g . Then the

VC-dmension of K is bounded from above by

VC (K) ≤
⌊q

2

⌋
·
⌈q

2

⌉
.

Furthermore, this bound is sharp in the sense that for every

q ∈ N there exists a set C = {c1, . . . cq} and a formal context K
of the above form such that VC (K) =

⌊q
2

⌋
·
⌈q
2

⌉
.
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A concrete example: The wisdom of the crowd phenomena for

(total) ranking data i

All-together, 146 undergraduates recruited from the human

subjects pool at the University of California Irvine ranked 10 US

holidays according to their assumed chronological order:
New Year’s Day

Martin Luther King Jr. Day

President’s Day

Memorial Day

Independence Day

Labor Day

Columbus Day

Halloween

Veteran’s Day

Thanksgiving Day

35



A concrete example: The wisdom of the crowd phenomena for

(total) ranking data ii

I Thus, VC (K) ≤ 5 · 5 = 25.

I Concretely, for this data set, VC (K) = 13.

I Thus, ε(Tν ,K) ≥ 1
13 ≈ 7.7%.

I There are ≈ 39 peelings.

I Thus, ε(Tν ,K) ≥ 39
146 = 26.7%.
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A concrete example: The wisdom of the crowd phenomena for

(total) ranking data iii
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Example: Synthetic geometry +
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Enlarging the breakdown point: The double peeling depth

40



Observation: If ν is minimal, then every peeling ν(A) builds a contrano-
minal substructure of the context (Here k = |ν(A)| ≤ VC (K).):

mj1 mj2 mj3 . . . mjk−1
mjk

gi1 © x x . . . x x

gi2 x © x . . . x x

gi3 x x © . . . x x
...

...
...

...
. . .

...
...

gik−1
x x x . . . © x

gik x x x . . . x ©

This leads to a ’perfect symmetry’ between gi1 , . . . , gik in the sense of:

’There exists non non-trivial implication between any of the objects of

ν(A)’.

Idea: break the symmetry by locally deleting the attributes mj1 , . . . ,mjk

(and possibly further attributes that are identical tome some mjl w.r.t the

objects of ν(A)) to uncover the hidden substructure of further attributes.
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Enlarging the breakdown point: The double peeling depth

I One can repeat this local ’peeling’ of attributes such that

ν(A) is reduced to a subset? ν∗(A) (by removing objects from

ν(A) that follow from other objects of ν(A) w.r.t. the reduced

context).

I Given an envisaged h < VC (K) one can ’always’ reduce the

size of the actual peeling to a size ≤ h.

I With this one can enlarge the breakdown point of the

corresponding depth function.

I Important: The enlarged breakdown point is of course then

only valid w.r.t. a reduced class of contamination pairs (i.e.

that contamination pairs that also respect the uncovered,

’stylized’ implications that were introduced during the process

of (locally) deleting attributes.)
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Example: Ranking data (h = 4)
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Example: Geometry
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