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PART (I+) II

... These thoughts are due to my impatience while waiting for Gurobi to

finish the calculations. ...
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A motivating example & some

comments (on statistical learning

theory/statistics)



A motivating example: Locations of plants in a gypsophylous

plant community in central Spain

A: H0?
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B: H0?
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H0: The spatial distribution of green and black plants is the same.
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A motivating example: Kolmogorov-Smirnov type test for dif-

ferences between spatial distributions of two sub-populations

Dn := sup
A∈S

∣∣∣P̂1(A)− P̂2(A)
∣∣∣

with

S := {A ∩ Xobs | A ⊆ R2,A convex } (a finite! closure system)

Xobs : the set of all observed points in Rd

P̂1 : empirical law of (sample of) subpopulation 1 of size n1

P̂2 : empirical law of (sample of) subpopulation 2 of size n2

n := min{n1, n2}
additionally set N := n1 + n2; m := max{n1, n2};

D+
n := sup

A∈S
P̂1(A)− P̂2(A); D−n := inf

A∈S
P̂1(A)− P̂2(A)
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Motivation/Question of interest

I H0 : P1 = P2 vs. H1 : P1 6= P2

I If Dn is large enough, reject H0

I How to assess statistical significance (i.e., how large is large?)?:

• A) permutation test (computationally demanding)

• B) VC analysis (very conservative)

• C) Rademacher type analysis (computationally as demanding as, and

in terms of conservativeness not better than A)

• D) simple union-bound analysis including estimation of |S |.
(Conservativeness lies between that of A and B, computationally

attractive in many cases)
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Under i.i.d. (?) sampling, under the null (with fixed Xobs for

ease of exposition, otherwise conditional analysis)

P(Dn > ε) ≤ 9

2
· N

h

h!︸ ︷︷ ︸
=:CVC

· exp{−n · ε2}

︸ ︷︷ ︸
=:α(ε)

(?, p. 172)

with N := n1 + n2 (and assuming n1=n2) and h the VC dimension

of the fixed and finite family S .
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A better bound for the case of finite S

P(Dn > ε) ≤ 4 · |S | · exp
[
− n · N
2 · (m + 1)

· ε2

]
︸ ︷︷ ︸

=:αub (|S |,n,m,ε)=:Γ

or for n = n1 = n2 :

P(Dn > ε) ≤ 4 · |S | · exp
[
−n · n

n + 1
ε2

]
≈ 4 · |S | · exp

[
−n · ε2

]
(triangle inequality plus union bound plus ?)

Note: Up to subtleties this is the same result as what follows from

the analysis of the growth function. 6



“Reminder” I

Hoeffding: P(P(A)− P̂n(A) > ε) ≤ exp
[
−2nε2

]
(with fixed event A and i.i.d sample of size n)

Serfling: P(P(A)− P̂n(A) > ε) ≤ exp
[
−2nε2/(1− f ∗n )

]
(for sampling without replacement from a population of size N and

sample of size n and f ∗n := (n − 1)/N)

Union bound:

P

(
L⋃

k=1

Ak

)
≤

L∑
k=1

P(Ak) ≤ L · c

with c := sup
k∈{1,...,L}

P(Ak)
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“Reminder” II

Triangle inequality (here):

P(|P̂1(A)−P̂2(A)| > ε) ≤ P(|P̂1(A)−P(A)| > ε
2

)+P(|P̂2(A)−P(A)| > ε
2

)

Reason:

“|P̂1(A)− P̂2(A)| > ε” ⊆ “|P̂1(A)− P(A)| > ε
2

” ∪ “|P̂2(A)− P(A)| > ε
2

”
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Comments

“The reality is that the VC line

of analysis leads to a very loose bound...”

“... Second, although the bound is loose, it tends to be equally

loose for different learning models, and hence is useful for

comparing the generalization performance of these models. This is

an observation from practical experience, not a mathematical

statement. ”

“Thus, the VC bound can be used as a guideline for generalization,

relatively if not absolutely. ” (?) 9



Comments

h ≤ min
([

D2A2
]
, n
)
+ 1

“There is a mathematical setting. When I came to [the] United State[s]

in 1990 first, people did not know VC theory, they did not know statistical

learning theory. In Russia, it was published two monographs, our

monographs, but in America they did not know. Then, they learned it

and somebody told me that it is worst-case theory and they will create

real-case theory, but till now, they did not. Because it is [a] mathematical

tool, you can do only what you can do using mathematics, and which

has clear understanding and clear description. And for this reason, we

introduced complexity. And we need this, because using .... VC dimension

you can prove some theorems ...” [Vapnik 2018]
10

https://www.youtube.com/watch?v=STFcvzoxVw4


Comments

Rademacher Complexity:

“Unlike the VC dimension based bounds, which were distribution

independent, the Rademacher complexity bounds depend on the

training set distribution, and thus can give better bounds for

specific input distributions. Furthermore, the Rademacher com-

plexity can, in principle, be estimated from the training set,

allowing for strong bounds derived from a sample itself.” (?)
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E
(

sup
A∈S
|P(A)− P̂N(A)|

)
≤ 2R

with

R := E

sup
A∈S

1

N

N∑
x∈Xobs

σi1A(x)



with σ1, . . . , σN i.i.d. Rademacher distributed (i.e.

P(σi = −1) = P(σi = 1) = 0.5.)

But: Directly estimating Rademacher complexity is as

computational expensive as doing a permutation test! (In our

cases, often the bottleneck is computing the supremum type

statistic.) Other techniques like Massart’s lemma would require to

estimate |S |.
12



Aims within this presentation

I Estimate |S | to assess statistical significance of a distributional test

I Estimating |S | is also a question of its own interest and with further
applications, e.g.:

• Quick check if computation of a large concept lattice is

computationally feasible at all (c.f., also (?))

• Uniform regularization by locally controlling |Sj | to regularize

S :=
⋃
j∈I

Sj (e.g. in the context of star-shaped subgroup discovery)

• . . .
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Aims within this presentation

I Works for meet-distributive closure systems/concept lattices

I In the non-meet-distributive case one might work with

meet-distributive (upper) approximations

I Meet-distributive approximations are of its own interest (e.g., in the

context of data depth within FCA or in the context of robustness

and FCA)
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Further examples



Further examples of meet-distributive closure systems

upsets

U upset iff ∀a ≤ b :

a ∈ U =⇒ b ∈ U.
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Application example:

multivariate poverty-/

inequality analysis (3

dimensions income,

education and health)

VC dimension = maximal

number of corners

principal filters

F principal filter if

F = {y ∈ V | y ≥ c} for

some c ∈ V .
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possible applications:

multidimensional

K.-S.-tests, e.g. item

response theory (item

impact or DIF)

VC dimension = 1

FALSCH!!

convex sets

C convex if ∀x , y , z ∈
V ,w ∈ conv({x , y , z}) :

x , y , z ∈ C =⇒ w ∈ C
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possible applications:

spatial statistics

VC dimension = ∞ (or

maximal number of

extreme points)
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Further examples of meet-distributive closure systems

I Subgroup discovery with only interordinally scaled variables

without ties.

I Apposition1 of many meet-distributive contexts (e.g., spatial

data (without ties) plus one or more numeric variable(s)

(without ties)).

I Local rings of sets ... are locally meet-distributive (after

factorizing over non-antisymmetries)

1In the sense of combining many meet-distributive contexts to one context by

using all attributes from every context.
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Example: convex sets

N = 300

|S | ≈ 5.7 · 1015

t-CI:
[
0; 1.9 · 1016

]
)

abc-CI:
[
1015; 1.7 · 1017

]
confidence level: 1− 10−10

based on sample of size 540

computation time ca 6h

h ≥ 27 (GUROBI: out of memory)
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Figure 1: Estimated number Nk of convex sets with k extreme points (left

linear, right logarithmic display
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Example: convex sets: (some) H1

n = 143, m = 157,N = 300

Dobs
n ≈ 0.728

PH0(Dn > Dobs
n ) ≤ Γ ≈ 1.2 · 10−15

abc-CI for Γ:
[
2.2 · 10−16; 3.7 · 10−14

]
runtime GUROBI (with tricks): 129s

h ≥ 27 (out of memory)

VC bound useless (too loose)
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Example: convex sets: H0

n = 143, m = 157,N = 300

Dobs
n ∈ [0.23; 0.54]

PH0(Dn > Dobs
n ) ≤ 5.2 · 1014 ?

runtime GUROBI (despite tricks): ≥ 5687s

(out of memory)

or: 217s for deciding DH0
n < Dobs

n

for one resample
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Side remark

Ho

H
,

21



Comment on Duhem-Quine / i.i.d.

I What if (especially in the spatial case) the sample is not i.i.d.

under the null?

I For example for the case of (r − 1)-dependent random

variables2, Hoeffding’s inequality (?) gives

P(|P(A)− P̂N(A)| ≥ ε) ≤ 2 · exp
[
−2 (n/r) ε2

]
and I presume that a similar statement is valid for ?. Together

with the union bound this would give

P(Dn > ε) / 4 · |S | · exp
[
−(n/r) · ε2

]
,

and n/r could therefore be vaguely interpreted as an effective

sample size.
2A random vector (X1, . . . ,Xn) is called (r − 1) dependent if for j − i ≥ r the

random vectors (X1, . . . ,Xi ) and (Xj , . . . ,XN) are independent.
22



Another application example (upsets)

I Subsample of Allbus 2014 (706 female and 809 male

respondents).

I Dimensions:

• Income.

• Health (self-reported, ranging from 1 (bad) to 6 (excellent)).

• Education (ISCED 2011: ranging from 0 (less than primary

education) to 8 (doctoral or equivalent level)).
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Marginal analysis
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Joint analysis

I h = 33 (number of upsets ∈ [1010, 1060], dual simplex algorithm

took less than a second).
I Dn = D+

n ≈ 0.36. (D−n ≈ −1.2%, female subgroup almost

stochastically smaller than male subgroup).
I Value of D+

n significantly positive according to a permutation test.

(D−n not significantly different from zero.)
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Estimating |S |

I h = 33, therefore we have |A| ≤ 33 for every minimal

generator A ∈ mingen(S) (see later).

I estimate of 3300 sampled minimal generators (took ca. 1.4

min time):

|S | ≈ 7 · 1020

CI : [0; 1.9 · 1021] (confidence level: 1− 10−10)

Γ ≈ 1.9 · 10−16 (CI : [0; 5.2 · 10−16]
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Figure 2: Left: Estimated number Nk of upsets with k extreme points

(i.e., minimal elements, logarithmic display). Right: Distribution of the

estimates of |S | (k is drawn uniformly from {1, . . . , 33} and then |Sk | is

estimated and multiplied with 33. The expectation of the obtained

estimator is then |S |.
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Comparison with permutation test

I permutation test with 20000 resamples (took ca. 12 min time)

I estimated p-value non-parametrically: 0 (or 1
20000 = 5 · 10−5)

I parametric p-value ≈ 4.8 · 10−31
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A last example

I N = 200 data points in R10.

I interordinaly scaled, i.e., we look at the closure system S of all

10-dimensional hypercubes generated by these 200 data

points.

I naive analysis gives |S | ≤
(
N10

)2 ≈ 1046

I VC analysis gives: h ≤ 2 · 10 = 20 and therefore

|S | ≤ 1.5 · Nh

h! ≈ 6.5 · 1027

I concretely estimating |S | (for standard-normally distributed

data points) gives |S | ≈ 5 · 1020

29



Reminder: Formal concept analysis



Reminder: Formal concept analysis (FCA)

Given: formal context K := (G ,M, I ) where

I G is a set of objects,

I M is a set of attributes,

I I ⊆ G ×M is a binary relation with the interpretation

(g ,m) ∈ I iff object g has attribute m.

I Aim: Describe I with the help of so-called formal concepts.

I Note: In the sequel, we will always assume that G is finite.
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Definition (formal concept)

Let K := (G ,M, I ) be a formal context. Define for A ⊆ G and

B ⊆ M the associated sets

A′ = {m ∈ M | ∀g ∈ A : (g ,m) ∈ I}
B ′ = {g ∈ G | ∀m ∈ B : (g ,m) ∈ I}.

Then, a pair (A,B) where A ⊆ G is a set of objects and B ⊆ M

is a set of attributes is called a formal concept if B = A′ and

A = B ′. In such a case, we call A the extent and B the intent of

the formal concept (A,B).
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Remarks I

I In the sequel, we will look at the family of all extents A ⊆ G .

This family is a closure system (i.e., a family of sets that

contains G and that is closed under arbitrary intersections).

We will denote this closure system with S .

I The operator that maps an arbitrary set A ⊆ G to its

so-called closure A′′ (or hull, think of the convex hull of points

in Rd ,) is denoted with γ.

32



Remarks II

I We will also use so-called formal (object) implications denoted

by A −→ B where A,B ⊆ G . A formal implication A −→ B is

valid in a formal context/closure system, if every extent/set of

the closure system C that does contain all elements of the

so-called premise A does also contain every element of the

so-called conclusion B.

I Note that the context K, the corresponding closure system

S of concept extents, the corresponding closure operator γ

and the family of all valid formal object implications are

equivalent descriptions of the underlying data structure.

Therefore, in the sequel, we will assign certain properties

always interchangeably to all of these equivalent descriptions.
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Remarks III

I In the sequel we will always assume that the context has no

duplicates, i.e. objects g , h ∈ G with identical attributes.

(This is no hard restriction because one can always handle

duplicates with a corresponding weighting of objects.)
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Illustrations
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Caution!

Not everything that is valid and intuitive in Rd does also hold for general

contexts/closure systems/closure operators!
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Minimal Generators

Definition (minimal generator)

A set A ⊆ G is called a minimal generator if we have γ(B) ( γ(A)

for all B ( A. The set of all minimal generators is denoted with

mingen(S). The set of all minimal generators of size K is denoted with

mingenK (S)

Remark

A set A is a minimal generator iff for all B ⊆ A with |A\B| = 1 we

have γ(B) ( γ(A).
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Theorem

The following statements are equivalent:

i) A is a minimal generator.

ii) A is implcation free, i.e., there exists no valid implication

B −→ C with B ⊆ A, ∅ 6= C ⊆ A and C ∩ B = ∅.
iii) A is shatterable w.r.t. S := γ(2G ), i.e.

A ∩ S := {A ∩ B | B ∈ S} = 2A.

Definition (VC dimension)

The VC dimension of a closure system is defined as the maximal

cardinality of a shatterable set (or a minimal generator or an

implication free set).
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Meet-distributive closure systems

Definition (meet-distributive closure system)

Let K := (G ,M, I ) be a formal context (without duplicates), let S be

the corresponding closure system of all concept extents and let γ be

the corresponding closure operator. Then K (or S or γ) is called

meet-distributive if one of the following equivalent properties hold:

i) every closure A ∈ γ(2G ) is the closure of its extreme pointsa

ii) the so-called anti-exchange property holds: For every A ∈ γ(2G ) and

x , y /∈ A we have

A ∪ {x} → {y} =⇒ A ∪ {y}��→ {x}

aA point x ∈ A is an extreme point of A if A\{x}��−→ {x}.
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Illustrations
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Theorem

A finite context without duplicates is meet-distributive if and only

if every closure A ∈ γ(2G ) has exactly one minimal generator

B ⊆ A (i.e., γ(B) = A and γ(C ) ( A for every C ( B), namely

the set of all extreme points of A.
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Counting concepts



Counting concepts

Simple idea: count minimal generators instead of concepts.

Because for meet-distributive contexts the mapping

γ∗ : mingen(S)→ S : A 7→ γ(A)

is a bijection, this will work. (The inverse mapping is given by

extr : S → mingen(S) : A 7→ extr(A),

where extr(A) := {x ∈ A | x is extreme point of A}.)
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How to count minimal generators?

Definition (independence)

We say that a point x ∈ G is independent of a set A ⊆ G if

x /∈ A and the set A ∪ {x} is implication free. For a fixed set A

we denote with ind(A) the set of all x ∈ G that are independent

of A.
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Enumerating all minimal generators of size K :

Algorithm 1 Enumerating mingenK

1: result ← ∅
2: for g1 ∈ G do

3: for g2 ∈ ind({g1}) do

4: for g3 ∈ ind({g1, g2}) do

5:
...

6: for gK ∈ ind({g1, g2, . . . , gK−1}) do

7: result ← result ∪ {g1, . . . , gK}
8: end for

9:
...

10: end for

11: end for

12: end for

13: return result 44



Counting all minimal generators of size K :

Algorithm 2 Counting mingenK

1: size ← 0

2: for g1 ∈ G do

3: for g2 ∈ ind({g1}) do

4: for g3 ∈ ind({g1, g2}) do

5:
...

6: for gK ∈ ind({g1, g2, . . . , gK−1}) do

7: size ← size + 1

8: end for

9:
...

10: end for

11: end for

12: end for

13: return size
K ! 45



Estimating the size of minimal generators of size K :

Algorithm 3 Counting mingenK

1: size ← 0

2: for g1 ∈ G do

3: for g2 ∈ ind({g1}) do

4: for g3 ∈ ind({g1, g2}) do

5:
...

6: for gK ∈ ind({g1, g2, . . . , gK−1}) do

7: size ← size + 1

8: end for

9:
...

10: end for

11: end for

12: end for

13: return size
K ! 46



Estimating the size of minimal generators of size K :

Idea:

I In the steps 6-8 one computes the size of

ind({g1, g2, . . . , gK−1})
I In the steps 5-9 one computes the size of

ind({g1, g2, . . . , gK−2) (up to double-counting)

I
...

I Now replace in every loop the exact counting scheme by a

mean-unbiased estimator:
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Algorithm 4 estimating mingenK

1: size ← 1

2: for g1 ∈ G do

3: compute exactly |ind({g1})|
4: size ← size · |ind({g1})|
5: for g2 randomly drawn from ind({g1}) do

6: compute exactly |ind({g1, g2})|
7: size ← size · |ind({g1, g2})|

8:
...

9: for gK−1 randomly drawn from ind({g1, g2, . . . , gK−2}) do

10: compute exactly |ind({g1, g2, . . . , gK−1})|
11: size ← size · |ind({g1, g2, . . . , gK−1})|
12: end for

13:
...

14: end for

15: end for

16: return size
K ! as a mean-unbiased estimator of |mingenK |
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